
16th IEEE International Conference on Robot & Human Interactive Communication
August 26 - 29, 2007 / Jeju, Korea

Applying Dynamic Software Architecture
Management to Home Service Robot Software

Dongsun Kim and Sooyong Parkt
Department of Computer Science

Sogang University
Shinsoo-dong, Mapo-Gu, Seoul, Republic ofKorea

{darkrsw, sypark}(dsogang ac.kr

Abstract- Home service robots increasingly need to provide
diverse and complex services such as cooking, sweeping and
dishwashing. These services inevitably require a number of
software functions simultaneously. For example, the cooking
service requires an arm manipulation function to grasp dishes,
an navigation function to move around, an object recognition
function to find foods, an speech recognition function to
understand user requirements, and etc. However, when the
services and software functions are executed simultaneously
in a robot without run-time software management, those may
cause malfunction due to resource contention. In this paper,
we describe the situation that causes resource contention and
formulate architecture-based adaptation in robot software
systems. Based on the formulation we proposed an approach
to dynamic robot software management that effectively uses
robot computing resources.

I. INTRODUCTION

Robots are incrementally replacing humans' jobs in
different areas, for example, industrial robots in assem-
bly lines, UAV(Unmanned Air Vehicles)/UGV(Unmanned
Ground Vehicles) in military, and vacuum cleaner robots
in houses. But these robots are only dedicated one specific
service not like general purpose desktop PCs, e.g. an
industrial robot assemblies only one component repeatedly
for its whole life-cycle, an UAV is designed only for
scouting, and a vacuum cleaner robot cannot help other
chores. People, however, expect robots can assist soon
our everyday life as a servant, for example, dishwashing,
laundry, cooking, and sweeping. In addition, they expect
the robots will enrich our life by playing or chatting with
them. In other words, people want 'Home Service Robots'.

CIR(Center for Intelligent Robots) in KIST(Korea In-
stitute of Science and Technology) is developing home
service robots for elderly people. The goal of CIR is to pro-
vide home service robots which can support chores to help
handicapped elderly people and entertain them to prevent
Alzheimer's disease. CIR's robot systems include diverse
software functions that realize services, for example, a
laser range funder based navigator and a face recognizer
to support a human following service. CIR expects that the

*This research was performed for the Intelligent Robotics Development
Program, one of the 21st Century Frontier R&D Programs funded by the
Ministry of Commerce, Industry and Energy of Korea.

tTo whom all correspondence should be addressed

Mun-Taek Choi and Munsang Kim
Center for Intelligent Robotics

Frontier 21 Program at
Korea Institute of Science and Technology

Seoul, Republic ofKorea
{mtchoi, munsang}(dkist.re.kr

commercial version of home service robots can be released
by 2015.

Unfortunately, home service robots are still on a basic
stage which is unstable to provide above useful services be-
cause of two major problems: maturity and cost. Yet home
service robots cannot provide stable services like typical
word processors. For example, it is hard to guarantee for
a robot to recognize a cup correctly every time, and to
classify a refrigerator and and air conditioner by vision
because of their similar shapes. However, This problem is
not a software engineering issue and should be solved by
improving each technologies.

Another problem is cost to build a robot. CIR's home
service robot is still expensive to be a home appliance
Sensors and actuators are mandatory facilities in a robot,
threrfore, CIR tried to reduce computing devices. But
reducing cost on computing devices inevitably leads to
reducing computing power. To realize above useful services
within low cost and low computing power, CIR needs to
exploit computing power of a robot efficiently. We inves-
tigated how a robot uses computing power and proposed
how the robot can use limited computing power effectively
and efficiently.

This paper is organized as follows. Section II describes
background knowledge to understand our robot software
system and software architecture-based adaptation. Section
III explains how to formulate dynamic software architec-
ture management in robot software systems at run-time. In
Section IV we propose an approach to dynamic software
architecture management in our robot software systems by
using software architecture-based adaptation at run-time. In
Section V, we evaluate the effectiveness of the proposed
approach. Section VI presents the conclusions.

II. BACKGROUND

For more than three years, CIR is developing 'T-Rot[1]'
which is a home service robot to support chores and to
help elderly people. T-Rot can provide lots of services
like a servant, for example, preparing a lunch, following
a person, and delivering an object. Services also include

1T-Rot which is a robot being developed by CIR has full facilities such
as laser range finders and arm manipulators and other necessary divices.
T-Rot costs over $200,000

978-1 -4244-1 635-6/07/$25.00 i2007 IEEE.

MP-32

285

care and entertainment services such as checking blood
pressure, playing a game and chatting with a person to
take care of physical and mental status of elderly people.
Each service requires a collection of software functions.
For example, to serve a cup of beverage, it needs a speech
recognizer(to recognize a command from a user), a dialog
processor(to find out what kind of beverage the user wants),
a text-to-speech module(to speak), a navigator(to move
to a kitchen or to the user), and an arm manipulator(to
grasp a cup). This indicates a robot must execute a set
of software functions simultaneously and inevitably suffer
from resource contention.

Until developing a prototype of T-Rot, CIR assumed
that T-Rot starts and executes all software functions at
run-time at simultaneously because they thought three or
four SBCs are enough. However, CIR has developed over
twelve software functions(still increasing) in the last stage
of prototyping and has soon realized that it is nearly
impossible to execute all software functions simultaneously
because of limited resources in the robot and increasing
numbers of software functions. Moreover, CIR will reduce
the number of SBCs due to high cost of the robot.

Another problem is that every software function is
designed and implemented to be executed in one specific
SBC. Most groups of developers thought it is more efficient
that the location of a software function they are devel-
oping because their software function can exploit robot
computing resources independently without interference
at development time and does not cause communication
overhead between SBCs. But this may cause inflexibility
and starvation when a set of software functions which were
designed to be executed in one specific and fixed SBC
is executed simultaneously. In this situation, the software
functions cannot exploit enough resources(e.g. CPU time,
memory and network bandwidth) due to competition, even
other SBCs have enough resources. Consequently, this fact
leads to malfunction of their functionalities. For example,
when a collection of software functions including a laser
range finder based navigator is executed in one SBC
simultaneously in T-Rot, we have seen the navigator cannot
move the robot successfully because the navigator cannot
exploit enough CPU time from the SBC.

Moreover, every software function cannot be divided
into detail and smaller modules. This problem leads to
inefficient robot resource usage. We, for instance, have
experienced the following situation: when a set of software
functions consume 7000 of CPU time of SBC-A and
another set of software functions consume 80% of CPU
time of SBC-B, a new software function that may consume
5000 of CPU time cannot be executed even though 5000 of
free CPU time is available.

If every software function can be executed in any SBC
and divided into smaller modules, a robot can exploit
its computing resources more efficiently. But It is not
applicable to examine and record all possible combinations
of the locations(SBCs) of software functions to solve this
problem because there are a number of combinations and

the number of software function is increasing rapidly.
One possible solution to the above problems is dynamic

software architecture-based adaptation[2]. This approach
enables software to change its structure and behavior based
on its architecture. A software architecture[3] consists of a
set of components which is computing units and a set of
connectors which enables communication between com-
ponents. Also a software architecture defines organization
of those components and connectors so that software can
execute its behavior. We have adopted dynamic software
architecture-based adaptation to refine software function
into components and to manage(i.e. to deploy) those com-
ponents efficiently and dynamically on SBCs in a robot.

The rest of this section explains structure of CIR's robot
software systems that defines scope of dynamic software
architecture management, and illustrates more details on
dynamic software architecture-based adaptation. Based on
this section, section III formulates dynamic software ar-
chitecture management in home service robot software
and section IV proposes how to realize dynamic soft-
ware architecture management by using dynamic software
architecture-based adaptation.

A. Three Layer Architecture
CIR's robot software system has a typical three layer

hybrid reactive-deliberative architecture[4] which is a lay-
ered software architecture dedicated to robot systems.
This architecture consists of 'the deliberative layer', 'the
sequencing layer', and 'the reactive layer'. The deliberative
layer understands user commands, plans a service as a
task based on the commands, and recognizes the current
situation based on observed data. The sequencing layer
contains software functions which have not hard realtime
constraints such as navigation, localization, recognition
and text-to-speech. The reactive layer contains software
functions called reactive modules that have hard realtime
constraints.

In this research the sequencing layer is considered the
target of adaptation because the deliberative layer must
control the robot's behavior continuously and software
functions in the reactive layer have hard realtime con-
straints in which dynamic adaptation may cause malfunc-
tion. Hence we concentrated to analyze and design software
functions in the sequencing layer. These activities identify
components and connectors and its organization(i.e. archi-
tecture). Based on these activities, robot software functions
can be dynamically deployed.

B. Software Architecture-based Adaptation
Software architecture-based adaptation[2] is an approach

to dynamic software evolution at run-time. This approach
basically assumes that the software system which is the
target of adaptation must be designed by well-defined
software architecture[3]. Software architecture consists of
components which execute software functionalities and
connectors which connect components. A component has
executable code which carries out a specific functionalities.
A connector links two or more components and relays

286

messages between components. A software architecture
organizes structure of software functions which defines
connections between components and connectors.
Many researchers proposed software architecture-based

adaptation approaches. Garlan proposed the Rainbow
framework[5] that reconfigures the architecture of net-
worked systems based on a modified version of Acme
language[6] which can describe software architectures.
Taylor proposed the C2-architecture style based[7] dynamic
adaptation approach[8] which can reconfigure architectures
of desktop applications designed by the C2-architecture
style. In addition to above two approaches, a couple of
approaches[9], [10] was examined. All the approaches
provide how to organize(model) software architecture and
how to implement components and connectors to be recon-
figured dynamically.

Based on the examination, the process for CIR's robot
software system development which enables dynamic adap-
tation at run-time was designed. Briefly two activities are
needed; 1) architecture modeling[1] and 2) components
and connectors implementation[11]. Software architectures
of software functions of the robot software system were
modeled by the COMET(Concurrent Object Modeling and
architectural design mEThod) method already[12]. The
previously examined approaches to dynamic adaptation
proposed implementation methods and guidelines for each
domain but not for robot software systems. Hence we
have proposed the SHAGE framework[13], [11] and this
research adopts its implementation guidelines.

III. PROBLEM FORMULATION

As explained in section II, the robot software system
needs dynamic software architecture management to han-
dle resource contention. Before explaining the proposed
approach we need to define software architecture-based
adaptation in the robot software system which has lim-
ited resources. Hence we will introduce sub-architectures,
components, and their relationship to help understanding.
As explained before, to support a service, T-Rot has a

set of software functions such as navigation, object recogni-
tion, automatic speech recognition, and etc. In CIR's robot
software system, each software function is designed as a
sub-architecture that carries out an independent function-
ality. A sub-architecture defines how the functionality of
sub-architecture interacts with a task(see section I1-A that
the deliberative layer plans and how the functionality is
implemented by a set of components(i.e. composition of
components). A component has executable code fragments
to implement the (partial) functionality the sub-architecture
provides and has interfaces to communicate with other
components. A task needs more than one sub-architecture
and a sub-architecture needs more than one component.

The problem is that every component consumes robot re-
sources such as CPU time, memory, sensors, actuators and
network bandwidth. This fact incurs each sub-architecture
occupies a amount of robot resources and consequently
each task needs a large portion of robot resources, some-
times, even more than entire robot resources. If a task is

executed without dynamic software architecture manage-
ment, it may cause malfunction as explained in section
II. To handle this problem, two perspectives of dynamic
software architecture management must be considered;
temporal and spatial architecture management. Temporal
architecture management deals with architectural evolution
as a task proceeds. This management is related to prefetch.
Spatial architecture management deals with architecture
deployment at a specific moment. This paper only deals
with spatial architecture management and leaves temporal
architecture management as future work.

Arch,

C4 CJ

Arch2

(' C '
8 C>

C10 Ci< C12 C11

Arch3

Fig. 1. Examples of sub-architectures in a robot

Spatial architecture management can be modeled by
the 0-1 multidimensional, multiple knapsack problem. For
example, at some moment, a task needs a set of sub-
architectures when a user requests a service. Each sub-
architecture requires a collection of components and these
will consume robot resources. In CIR's current robot
systems, one specific sub-architecture is executed in one
SBC(e.g. object recognizer is executed in the vision SBC
in which cameras are installed) but the task may require
too many sub-architectures in one SBC and it may lead
to over consumption of computing resources of the SBC.
At this moment the robot needs efficient deployment of
sub-architectures. Consequently, it indicates efficient de-
ployment of components.

Let N be the number of SBCs(i.e. multiple knap-
sacks) and n be the number of components. Let C =

{Cl, C2,... , Cn } be a component set that will be deployed
in a set of SBCs SBC = {SBC1, SBC2,... , SBCN} at
a moment. CPUSBC, and MemsBci are computing re-
sources(i.e. multidimensional knapsacks), which the com-
ponent set will use, for each SBCi where i = 1, 2, ,N.
CPUc, and Memcj are computing resources that each
component Ci consumes where j 1,2,... , n. A sub-
architecture Archk is comprised of a subset of C as
depicted in figure 1 where k = 1, 2, 3, . Each sub-
architecture defines connection between components in the
sub-architecture. The following matrix depicts connection
information(connectors) of sub-architecture Arch2 in fig-
ure 1:

Overhead
(C6 -C7) (C7 -C8) (C8 -C9)

1 .5 2.5

287

Each element in the above matrix indicates communica-
tion overhead of each connection. For example, zero means
there is no connection between two components and a real
numbered element larger than zero means there is a con-
nection. Each real numbered element indicates an amount
of relative communication overhead in a robot software
system. These real numbered values are transformed by
using system-dependant values, for example, 'MB/s'.

The goal is to deploy the component set C into the
SBC set SBC under the constraint which minimizes the
distribution of residue resources of SBCs as shown in figure
2. This goal is needed to absorb resource overconsumption
when some components overuse resources due to some par-
ticular reasons(errors or unpredicted situations). Assuming
xij has 1 if a component Cj is deployed in a SBC SBC,
and otherwise 0, the goal can be formulated as follows:

n n

minimize F = w1 E Z(C- C) + w2V(SBC)
i=l 1 ()

where 0 <w 1,w2 < 1 and 0 <W1 +w2 <

subject to
n

Z:CPUCj Xij < CPUSBCi for every i= 1, 2, , n
J=1
n

S MemC3XiJ <K MemsBci for every i= 1, 2, n
J=1

(2)

F in the equation (1) is the object function of this
problem, V(SBC) is the distribution of residue resources
of SBCs, and w01, w2 are weight values of the sum of
communication overhead and the distribution for each.
(Ci-Cj) is the communication overhead value between Ci
and Cj. Ifwe can find an matrix of xij which minimizes F
and satisfies constraints in equation (2), every component
can be deployed into SBCs using computing resources
in the robot efficiently. The next section describes the
proposed approach to obtain an possible matrix of xij.

IV. APPROACH

This section explains processes to realize the formulated
problem in section III. It needs following steps:

1) Analyzing and modeling sub-architectures,
2) Designing and implementing components in sub-

architectures,
3) Evaluating resources that each component uses, and
4) Deploying components into SBCs.
The rest of this section provides brief processes to

achieve the above steps.

A. Sub-architecture Analysis and Modeling
The COMET methodology[12] is adopted to construct

sub-architectures of software functions in CIR's robot soft-
ware systems. We have already applied the methodology

to a navigator as a pilot[1]. In this methodology, each
software function is analyzed by various perspectives such
as static and dynamic views and modeled by UML(the
Unified Modeling Language)[14].

B. Component Design and Implementation
After analyzing and modeling sub-architectures, com-

ponents that constitute sub-architectures are implemented.
These components should follow specific implementation
guidelines proposed by our previous work[11]. By these
guidelines, those components can be deployed dynamically
at run-time. For example, if C2 and C3 are deployed in
the same SBC(e.g. SBC1), the SHAGE Framework[13]
automatically connects two component by a connector
which uses direct invocation. When C3 moves to SBC2,
the framework automatically reconnect two components
by a connector which uses remote invocation(e.g. RMI).
This dynamic adaptation can be done by implementation
guidelines that the framework provides.

C. Resource Usage Estimation

To support spatial architecture management at run-time,
statistical resource usage information of every component
must be estimated. Although the best way to estimate
resource usage is on-line estimation that evaluates resource
usage of components at run-time after deployment, but this
way needs a lot of computation power. One alternative
way is off-line estimation that evaluates resource usage
at run-time before deployment for each sub-architecture.
Even though this way cannot estimate real execution of
sub-architectures, it can estimate meaningful data without
overhead after deployment time. In off-line estimation,
each sub-architecture is executed independently in a robot
system and resource usage of each component is estimated.
These estimation data of components will be used in
component deployment step.

D. Component Deployment
When the task manager in the deliberative layer requests

a sequence of actions to the sequencing layer, the SHAGE
framework searches a set of appropriate sub-architectures.
Every component in the set of sub-architectures must be
deployed in SBCs to be executed. Also the deployment
should not violate resource constraints in each SBC. As
explained in section III this deployment problem is a 0-
1 multidimensional, multiple knapsack problem. Unfortu-
nately, finding an optimal solution of a knapsack problem is
NP-complete[15]. Hence we proposed an greedy algorithm
to solve the problem as follows:

1) Compute weighted sums of CPU and memory usage
estimation values of every component,

2) Deploy a component from the component which
consumes most resources,

3) Select a SBC to minimize the object function F, and
4) Repeat 2)3) until all components are deployed.
For example, let a component set C has three com-

ponents, C1, C2, C3(their resource usage is shown in ta-
ble I) and assume that there are two SBCs which can

288

SBC1 SBC2 SBC3
CPU I
Mem I

CPU I II I
Mem lI I I

CPU I I
Mem

Fig. 2. An Example of component deployment

TABLE I

RESOURCE USAGE OF COMPONENTS IN SECTION IV-D

Cl C2 C3
CPU 20 40 15

Memory 5 10 4

execute those components. Suppose that weight values
in the object function F are wi = 5 and w2 = 1.
The architecture for those components defines connections
(C1 -C2), (C1 -C3), and (C2 -C3) and their connection
overhead data are (C1 -C2) = 1.5, (C1 -C3) = 1, and
(C2 -C3) = 2. Assume that the weight of CPU usage is
equal to 1 and the weight of memory usage is equal to 3.
Then, calculate overall resource usage of each component
is C1 = 35, C2 = 70, C3 = 27. After calculating resource
usage of components, select the component that consumes
the largest resources, in this case C2. When deploying
just one component, the value of object function F is
same wherever the component is deployed. Assume C2
is deployed in SBC1. Select C1 as a component to be
deployed in the next step. If C1 is deployed in SBC1,
F = 60, and if in SBC2, F = 27.5. Hence C1 is deployed
in SBC2. In this manner C3 is deployed in SBC1.

Although the above greedy algorithm cannot guarantee
to generate an optimal solution, but it can produce an
reasonable solution in linear time. The next section gives
a case study that applies the above approach to a simple
situation.

V. CASE STUDY

In this section we report on a case study for evaluat-
ing dynamic software architecture management to home
service robot software. In this case study, we suppose the
task manager requests five software functions to achieve a
specific task. Original assumption(static deployment) limits
the location of sub-architectures of every software function.
For example, all components in 'Object Recognizer' must
be deployed and executed in the Vision SBC that has
cameras. This assumption looked reasonable when the sub-
architecture can dominate the SBC's resource. But this
is not realistic because most tasks require a collection

of software functions. We first verified the situation that
causes malfunction when deploying sub-architectures by
static deployment under the following configuration: 1)
Two SBCs; one is the Vision SBC that has cameras and
pan-tilt gears which controls the robot's head, the other one
is called the Main SBC that has wheels, microphones, laser
range finders, and speakers. 2) Each SBC is equipped with
1GB of main memory and 2.2 GHz CPU. 3) Two SBCs
are connected by 100 Mbps network.

Fig. 3. Capture image of the case study in section V

Following static deployment, we have deployed a laser
range finder-based navigator(has five components), a TV
program recommender(four components), an arm manipu-
lator(four components), an interaction manager(seven com-
ponents), and an active audition planner(four components)
into the Main SBC. At this time the Vision SBC has no
resource consumption. Then, we focused on the navigator's
behavior. The navigator has a constraints that checks the
robot's pose and a map around the robot every 200ms to
navigate safely. But under static deployment, the navigator
cannot have enough computing resource(especially CPU)
and cannot retrieve a pose and a map every 200ms. This
causes wrong path planning and the robot cannot reach
the destination. This situation can be relieved by removing
more than one sub-architectures, but the task that requires

289

all software functions simultaneously cannot achieve its
goal.

Hence, we applied our approach explained in sec-
tion IV to the above situation. First, we analyzed and
modeled sub-architectures of the five software functions.
Then, we designed and implemented every component in
the sub-architectures by using the guidelines of SHAGE
framework[13], [11]. Based on the implementation, we
estimated resource usage(CPU, memory, and communi-
cation overhead) of every component by profiling tools.
The run-time environment of the framework adaptively
deployed components of sub-architectures by using the
algorithm explained in section IV when the task manager
requested the five software functions. When using software
architecture-based adaptation, we can find out the navigator
can make a path and follow the path successfully. Figure
3 shows screen shots of user interfaces in the framework
and the robot using the framework to carry out software
architecture-based adaptation.

The greedy algorithm has O0(nN) time complexity
where n is the number of components to be deployed
and N is the number of SBCs. In this case study we
carried out the above experiment 79 times with software
architecture-based adaptation and measured time to decide
the location of 24 components in two SBCs. Average time
to make a decision was about 42,us(much less than one
millisecond) in a SBC. This overhead doesn't influence
overall performance of the robot software system. Another
overhead is generated in the framework. In conventional
method invocation a program calls a method directly like
foo () ; but in the framework every method invocation
is done by message passing. Message passing mechanism
restricts method invocation to indirect and implicit passing
of messages through a connector. Indirect and implicit
mechanism may cause delays in method invocation. Hence
we measured invocation overhead of both invocation mech-
anisms. The result of the average of direct invocation
delays was 6,us and the result the average of message
passing delays was 74,us on the average. Message passing
takes more time by ten times but the number '74,us' is
a quite small number that doesn't influence over system
performance.

VI. CONCLUSIONS

In this paper we have described an approach to dynamic
software architecture-based adaptation in robot software
systems. Based on the given three layer robot architec-
ture and software functions, this approach determines the
location of software units(components) and deploys them
into SBCs dynamically. To realize the approach, we have
defined our robot software system, sub-architectures, and
componenets. Then, we have formulated the deployment
problem to a 0-1 multidimensional, multiple knapsack
problem. The proposed approach has four steps; sub-
architecture analysis and modeling, component design and
implementation, resource usage estimation, and component
deployment. In the case study, we have evaluated effective-

ness of the approach and measured overhead generated by
the approach.

This work suggests a number of important future direc-
tions. First is the lack of sub-architectures and components.
Every participating researcher(or team) in CIR has enough
technologies to implement the software function which they
are responsible for and has own implementation. But most
of implementations don't have well-designed architectures
and components. This fact may restrict opportunities for
dynamic robot software adaptation. Further study needs
more effective education and reengineering researches.
Second is need for more effective resource usage estima-
tion. More precise resource usage estimation is an impor-
tant technology for efficient dynamic adaptation but the
proposed approach provides an estimation method before
deployment time. An efficient on-line resource estimation
method that has less overhead at run-time will support more
effective dynamic adaptation.

REFERENCES

[1] M. Kim, S. Kim, S. Park, M. Choi, M. Kim, and H. Gomaa,
"Uml-based service robot software development: A case study,"
in Proceedings of the 28th International Conference on Software
Engineering, Shanghai, 2006.

[2] P. Oreizy, M. M. Gorlick, R. N. Taylor, D. Heimbingner, G. Johnson,
N. Medvidovid, A. Quilici, D. S. Rosenblum, and A. L. Wolf,
"An architecture-based approach to self-adaptive software," IEEE
Intelligent Systems, vol. 14, pp. 54-62, May 1999.

[3] M. Shaw and D. Garlan, Software Architecture: Perspectives on an
Emerging Discipline. Prentice Hall, 1996.

[4] E. Gat, "On three-layer architectures," in Artificial Intelligence and
Mobile Robots (D. Kortenkamp, R. P. Bonnasso, and R. Murphy,
eds.), MIT/AAAI, 1997.

[5] D. Garlan, S.-W. Cheng, A. C. Huang, B. Schmerl, and P. Steenkiste,
"Rainbow: Architecture-based self-adaptation with reusable infras-
tructure," Computer, vol. 37, pp. 46-54, October 2004.

[6] D. Garlan, R. T. Monroe, and D. Wile, "Acme: Architectural descrip-
tion of component-based systems," in Foundations of Component-
Based Systems (G. T. Leavens and M. Sitaraman, eds.), ch. 3, pp. 47-
67, NY: Cambridge University Press, 2000.

[7] R. N. Taylor, N. Medvidovic, K. M. Anderson, J. W. Jr., J. E.
Robbins, K. A. Nies, P. Oreizy, and D. L. Dubrow, "A component-
and message-based architectural style for gui software," IEEE Trans-
actions on Software Engineering, vol. 22, pp. 390-406, June 1996.

[8] P. Oreizy, N. Medvidovic, and R. N. Taylor, "Architecture-based
runtime software evolution," in the 20th International Conference
on Software Engineering, 1998.

[9] J. Hillman and I. Warren, "An open framework for dynamic reconfig-
uration," in 26th International Conference on Software Engineering,
2004.

[10] S. 0. Hallsteinsen, E. Stav, and J. Floch, "Self-adaptation for
everyday systems.," in WOSS, pp. 69-74, 2004.

[11] D. Kim and S. Park, "Designing dynamic software architecture for
home service robot software," in IFIP International Conference on
Embedded and Ubiquitous Computing(EUC) (E. Sha, S.-K. Han,
C.-Z. Xu, M. H. Kim, L. T. Yang, and B. Xiao, eds.), vol. 4096,
pp. 437-448, 2006.

[12] H. Gomma, Designing Concurrent, Distributed, and Real-Time
Application with UML. Addison-Wesley, 2000.

[13] D. Kim, S. Park, Y Jin, H. Chang, Y-S. Park, I.-Y Ko, K. Lee,
J. Lee, Y-C. Park, and S. Lee, "Shage: A framework for self-
managed robot software," in Proceedings of Workshop on Software
Engineering for Adaptive and Self-Managing Systems(SEAMS),
2006.

[14] G. Booch, J. Rumbaugh, and I. Jacobson, The Unified Modeling
Language User Guide. Addison-Wesley, 2nd ed., 2005.

[15] D. Pisinger, "An exact algorithm for large multiple knapsack
problems," European Journal of Operational Research, vol. 114,
pp. 528-541, 1999.

290

