
Dynamic Architectural Selection: A Genetic Algorithm Based Approach∗

Dongsun Kim and Sooyong Park

Department of Computer Science and Engineering, Sogang University

1 Shinsoo-dong, Mapo-gu, Seoul, 121-742, Republic of Korea

{darkrsw,sypark}@sogang.ac.kr

Abstract

As the software industry is focusing on dealing with var-

ious requirements and environments, such as mobile and

ubiquitous environments, software systems are increasingly

undergoing many situational changes. These changes in-

fluence the quality of services that the software provides.

Therefore, to maintain the performance of the software, it

must be reconfigured. The reconfiguration is a complex

problem if an application faces a large number of situa-

tions and has a number of software architectural instances.

In this paper, we propose a novel approach to autonomous

architectural selection in response to the current situation

of various environments. This approach enables a software

system to determine the best architectural instance for the

current situation. To quickly find the best instance, we ap-

ply a genetic algorithm to the selection process. Further, we

provide a performance evaluation to demonstrate that our

approach efficiently find the best instance (or considerably

good instance).

1. Introduction

User preferences, which represent the quality attributes

that the user desires and their priority of quality attributes,

differ for each user and change depending on each instance

of usage during execution. Therefore, an application must

contain different functions to suit different users’ require-

ments; for example, if user A has more concerns about secu-

rity, then the application should sacrifice usability and add

more security functions to achieve a more secure execution,

while user B desires more faster execution and the applica-

tion must sacrifice usability and durability by removing rich

user interfaces and so on.

In addition to the user requirements, the changing en-

vironments in which applications perform their tasks com-

∗This research was performed for the Intelligent Robotics Development

Program, one of the 21st Century Frontier R&D Programs funded by the

Ministry of Knowledge Economy (MKE).

plicate the situation. For example, situation variance such

as position, noise, light, battery level, and network band-

width can influence mobile software applications. These

factors can change the quality of applications. Therefore,

the applications must modify their functionality in response

to situational changes.

The goal of this study is to provide a method that au-

tonomously selects an appropriate software architectural in-

stance from the large set of candidates in response to situa-

tional and requirement changes at runtime. To describe this

problem, we provide a motivating example that illustrates

how the software architecture must be changed when situa-

tions and requirements change. Then, we precisely formu-

late the architectural selection problem using softgoal inter-

dependency graphs [2]. To deal with this problem, this pa-

per provides a novel approach to autonomous architectural

selection using genetic algorithms [7]. This approach en-

ables a software system to find an architectural instance that

satisfies the current situation and user requirements within

a short amount of time even if the application have a large

number of candidate architectural instances. Further, this

selection process attempts to find an optimal architectural

instance for the situation and requirements.

The remainder of this paper is organized as follows. The

next section provides a motivating example that requires au-

tonomous architectural selection at runtime. Section 3 for-

mulates the architectural selection problem based on soft-

goal interdependency graphs. In Section 4, we propose a

genetic algorithm-based approach to autonomous architec-

tural selection. Section 5 evaluates our approach in terms

of its performance. Section 6 compares our approach to re-

lated work. Finally, Section 7 concludes the paper.

2. Motivating Examples

2.1. Situations, Quality Attributes and
Functional Alternatives

Changing environments and user requirements affect ap-

plications. For example, mobile applications are exposed

2009 International Symposium on Search Based Software Engineering

978-0-7695-3675-0/09 $25.00 © 2009 IEEE

DOI 10.1109/SSBSE.2009.11

59

2009 International Symposium on Search Based Software Engineering

978-0-7695-3675-0/09 $25.00 © 2009 IEEE

DOI 10.1109/SSBSE.2009.11

59

1st International Symposium on Search Based Software Engineering

978-0-7695-3675-0/09 $25.00 © 2009 IEEE

DOI 10.1109/SSBSE.2009.11

59

to diverse factors such as the location where an application

performs its function and the time when it performs its func-

tion. These factors lead to changes in application configura-

tions. For example, when the user of an mobile application

moves from indoors to outdoors, the noise level of the en-

vironment can change (usually, it gets louder). This change

may have an impact on the performance of an application

(e.g., an sound alert reminding about an appointment may

not be effective because of the background noise). To han-

dle these changes, we need to know which aspect from en-

vironments and user requirements affects applications and

which element in an application is affected by that aspect.

First, a situational change in an environment is an in-

fluential aspect on an application. Changes in an environ-

ment can be represented by a set of several situation vari-

ables that represent situational aspects in the environment.

For example, in mobile environments, the RSSI (Received

Signal Strength Indication) level, battery level, and bright-

ness are representative situational aspects that can affect the

quality of service of applications. They can have ordinal,

nominal, and numerical values, e.g., RSSI and battery level

can have ordinal values while the brightness level has inte-

ger values of [0, 255].
A change in situation variables represents a change of

environment. For example, if the current value of the sit-

uation variable “RSSI level” changes from 1 to 5, we can

assume that the environment of an application has changed.

To specify the contextual change of the environment, it can

have a vector of situation variables that may affect the ap-

plication’s performance. For example, suppose that an ap-

plication A1 may concern RSSI level, battery level, and

brightness. A vector < (rssi), (battery), (brightness) >

can denote the contextual status of the environment (e.g.,

< 0, 1, 220 > represents RSSI level = 0, Battery Level = 1,

and Brightness = 220).

There are two types of user requirements: functional

and non-functional requirements. Functional requirements

(FRs) include the system behaviors that must be performed

in the software system. On the other hand, non-functional

requirements (NFRs)1 address quality issues for software

systems[2]. NFRs deal with the degree of satisfaction. For

example, using an authentication method in an applica-

tion may satisfy security requirements at some level. This

concept is known as “satisficing” - sufficiently satisfactory.

This term was used by Herbert Simon in the 1950s. In this

paper, we deal only with changes of NFRs because applica-

tions tend to be required to change their functions at runtime

according to the user’s changing requirements concerning

the quality of service rather than functional aspects.

To adapt to changing situations and quality attributes, a

software system can have diverse alternative functions, e.g.,

1In this paper, we will also use quality attributes to represent NFRs as

described in [2].

“RichGUI,” “SimpleGUI,” and “NormalDisplay” as shown

in Figure 1. These alternatives represent candidate func-

tions that the application can take in situational and quality

changes. Alternatives can be grouped by a type. For ex-

ample, “HighContrastDisplay” and “NormalDisplay” alter-

natives belong to the same type, “Display” type. In each

type, only one alternative can be activated (e.g., “NormalD-

isplay” and “HighContrastDisplay” cannot coincide).

Each alternative has relationships with quality attributes,

as shown in Figure 1. For example, using a rich GUI

(Graphical User Interface) may influence the application’s

usability and durability because the rich GUI can provide a

better user experience and consume more battery life. This

influence can be quantized. The quantization can describe

the relationship more specifically. For example, the high

contrast display alternative can have a positive impact on

readability (denoted by “+”) but a worse impact on dura-

bility (denoted by “−−”). These impacts can be aggregated

for each quality attribute as shown in Figure 1 (on the top of

each quality attributes, responsiveness, usability, durability,

and readability). Assume that the plus and minus signs de-

note “+1” and “−1,” respectively. These aggregated scores

can be used to measure how much the user is satisficed.

To simply measure the degree of satisfaction for quality

attributes, we can integrate the scores as shown in Figure

1. Suppose that the user has the weight values (i.e., prior-

ity) of each quality attribute (0.2, 0.5, 0.1, and 0.2 for re-

sponsiveness, usability, durability, and readability, respec-

tively). The weighted sum of the quality attributes is 0.8.

This can be interpreted as the value of selected alternatives:

Rich GUI, High Contrast Display, and Videotelephony.

The value of the selected alternatives can be a criterion to

evaluate the selected alternatives to the current situation and

the user’s requirement represented by weight values. There-

fore, we can identify the best combination of alternative se-

lection by evaluating values of all possible combinations.

For example, we can calculate 18 combinations of the alter-

natives shown in Figure 1 (three of GUI, two of display, and

three of messaging alternatives) and we can find one combi-

nation that has the maximum value. This combination will

provide the best user experience.

2.2. Situational and Quality Changes

The value of alternatives can be changed as the current

situation changes. Value 0.8 in Figure 1 is valid in a situa-

tion where RSSI Level = 5, Battery Level = 3, and Bright-

ness = 120. When the situation changes, the current value

of the combination is not valid and it must be re-evaluated.

If the situation changes to RSSI Level = 1, Battery Level

= 1, and Brightness = 50, the value of the combination

[RichGUI, HighContrastDisplay, and Videotelephony] can

change to other values because the impact of alternatives on

606060

Messaging Alternatives
Display AlternativesGUI Alternatives

Responsi-
veness Usability Durability Readability

RichGUI SimpleGUINormalGUI Normal
Display

High
Contrast
Display

Compressed
Messaging

Videotele-
phony

Simple
Messaging

+++ ---

--- +

-- +

Score: -3 Score: +4 Score: -8 Score: +1
Weight:0.2 Weight:0.5 Weight:0.1 Weight:0.2

8.0)1()2.0()8(1.0)4(5.0)3(2.0 =+×+−×++×+−×Value=

RSSI Level = 5
Battery Level=3
Brightness=120

Figure 1. An example of value evaluation of

selected alternatives.

Messaging Alternatives
Display AlternativesGUI Alternatives

RichGUI SimpleGUINormalGUI Normal
Display

High
Contrast
Display

Compressed
Messaging

Videotele-
phony

Simple
Messaging

RichGUI Image
Compressor

Audio
Compressor

High
Contrast

Transformer

Messaging Alternatives
Display AlternativesGUI Alternatives

RichGUI SimpleGUINormalGUI Normal
Display

High
Contrast
Display

Compressed
Messaging

Videotele-
phony

Simple
Messaging

SimpleGUI
Text

Messaging
Processor

(a)

(b)

Figure 2. Examples of relationships between

alternatives and an architectural configura-

tion. (i.e., possible architectural instances)

quality attributes changes. For example, suppose that the

mobile device is exposed to a low RSSI level. Then, the

videotelephony function has a negative impact on respon-

siveness because it consumes more network resources than

other alternatives. At this time, the application should select

another alternative to provide a better quality of services.

Based on the changed impact values between alternatives

and quality attributes, the system can re-evaluate the values

of all combinations and select the best one. For every situ-

ational change, the system can re-evaluate all combinations

to adapt to the current environment at runtime; however,

this will be time-consuming if it involves a large number of

alternatives. This time-consuming task may lead to a de-

lay and performance degradation. Consequently, this can

cause negative user experiences because the system cannot

complete adaptation in time that the user can tolerate.

Similar to situational changes, the application must

change its configuration when the user requirements related

to quality attributes change. Although the application has

the same alternatives and monitors the same situation values

as those in Figure 1, the value of the selected alternatives

can be changed due to the change of weight value for each

quality attribute (i.e., the user may change weight values of

quality attributes). For example, if the user changes weight

values of quality attributes (responsiveness, usability, dura-

bility, and readability) shown in Figure 1 into 0.2, 0.2, 05,

and 0.1, respectively, the value of the selected alternatives

is changed from 0.8 to −0.1.

The application must re-evaluate all combinations of al-

ternatives to identify whether there are better alternatives

that satisfice change user requirements. This is also time-

consuming. However, it is not possible to calculate all val-

ues prior to runtime because the number of combinations of

weight values and situation values is not finite (in particular,

weight values are usually real numbers in [0, 1]). Therefore,

the application should dynamically re-evaluate the values

of combinations of alternatives to identify the best or better

combinations in changing environments (i.e., at runtime).

2.3. Architectural Reconfiguration

After finding the best or better combination, the appli-

cation must change its architectural configuration accord-

ing to the selected combination. In other words, when

the situation or user requirement changes, the application

finds a combination of alternatives that are more appropri-

ate for the current situation values and quality attributes,

and then changes its architectural configuration accord-

ing to the combination. For example, as shown in Fig-

ure 2.(a), “RichGUI” and “HighContrastDisplay” alterna-

tive can correspond to the “RichGUI” and “High Contrast

Transformer” component, respectively. “Videotelephony”

alternative can correspond to two components: “Image

Compressor” and “Audio Compressor.” If the application

observes changes from the environment or user, it subse-

quently changes its configuration according to the selected

alternatives, as shown in Figure 2.(b). These possible com-

binations are called architectural instances in this paper.

Deriving an actual software architectural configuration

from a combination of architectural decision is also an im-

portant issue of software architecture research; however,

this issue is not the focus of this paper and also previ-

ous studies have already dealt with this issue in terms

of interface matching[10] and prescribed reconfiguration

strategies[5]. In this paper, we assume that the application

that applies our approach is implemented by dynamic archi-

tectures that enable the application to reconfigure its config-

uration.

616161

3. Architectural Selection Problem

3.1. Quality Variables

In this section, we formulate the quality attributes using

softgoal interdependency graphs (SIG) that are proposed

by NFR (Non-Functional Requirements) framework[2]. A

softgoal interdependency graph represents relationships be-

tween quality attributes (i.e., NFRs). A softgoal represents

a quality attribute, and in an SIG, it is denoted by a cloud

shape. Interdependency between two softgoals is denoted

by a line connecting the two softgoals. By identifying soft-

goals and connecting them, an SIG represents the quality

attributes of an application.

Representing quality attributes by an SIG gives several

benefits to our approach. First, it helps a developer read-

ily elicit quality attributes. The NFR framework proposed

by Chung et al.[2] provides a means of identifying and an-

alyzing quality attributes in detail. Second, this is a well-

proven method for analyzing and representing quality at-

tributes in several areas including software architectures

with NFRs[9]. Third, this tree-like graph-based represen-

tation (i.e., SIG) can support the aggregation of impacts

between functional alternatives and quality attributes in a

bottom-up manner.

The quality attributes are formulated by a set of qual-

ity variables. Among softgoals of an SIG, only the highest

quality attributes (e.g., readability, performance, durability,

and usability in Figure 3) are considered to be quality vari-

ables because they will be the target of prioritization and

value evaluation in our approach. A quality variable qi can

have a real number that describes how the application satis-

fices the quality attribute that the quality variable represents.

A set of quality variables Q represents overall satisfaction of

the user (i.e., it represents how much the user is satisficed).

These quality variables should be aggregated to represent

one integrated measure. A value (or utility) function U that

measures the user’s overall satisfaction is defined as:

U(Q, W) = U(q1, q2, · · · , qn, w1, w2, · · · , wn)

= q1 · w1 + q2 · w2 + · · · + qn · wn

=
n∑

i

qi · wi

where Q is a set of quality variables, W is a set of

weights, and each wi is a weight of quality variable qi, and

n is the number of quality variables (i.e., |Q| = n). The

sum of weights must be equal to 1 (i.e.,
∑n

i wi = 1). The

value of a quality variable is determined by the current situ-

ation and selected functional alternatives (to be described by

the remainder of this section). The weights are defined by

the user and they represent the priority of quality attributes.

They can be changed by the user at runtime.

Normal
Display

High
Contrast
Display

Readab
-ility

Perfor-
mance Durability Usability

Display
Readability

Responsive
-ness Latency Battery

Durability
Usability of
Messaging
Service

Widget
Readability

Network
Latency

Refresh
Rate

Memory
Usage

Usability of
Calling
Service

RichGUI Simple
GUI

Compressed
Messaging

Normal
GUI

Videotele-
phony

Simple
Messaging

…

Alternative Type t1 Alternative Type t2 Alternative Type t3

Alternative Type t4

Figure 3. An example of softgoal interdepen-

dency graphs with alternative types.

3.2. Alternatives

Functional alternatives described in the previous sec-

tion are denoted by operationalizing goals in our formu-

lation. An operationalizing goal is introduced by NFR

framework[2] to represent a design decision, e.g., simple,

compressed, or videotelephony messaging services shown

in Figure 2. An operationalizing goal in an SIG is denoted

by a cloud shape with bold lines as shown in Figure 3.

An operationalizing goal can have an impact on soft-

goals. This relationship between an operationalizing goal

and a softgoal is represented by contribution. An opera-

tionalizing goal contributes to one or more than one soft-

goals with some degrees as shown in Figure 1. In NFR

framework, this relationship is quantized into some abstract

notations such as “−− (= BREAK)” and “+ (= HELP).” In

our approach, we do not use these notations; instead, we use

situation evaluation functions (see Section 3.4) to represent

the contributions of operationalizing goals.

In this approach, alternatives that have similar character-

istics must be grouped by an alternative type as described in

the previous section. Each type ti can have only one value:

one of the alternatives that constitutes the type ti. In other

words, alternatives that cannot coincide should be grouped

as an alternative type. Each alternative should belong to

only one alternative type. These alternative types are used

to define architectural decision variables. An example of al-

ternatives types is shown in Figure 3 (they are grouped by

rectangles).

3.3. Architectural Decision Variable

An architectural decision variable determines part of an

architectural configuration using an alternative type. In

our study, one alternative type corresponds to one archi-

tectural decision variable as shown in Figure 4 (an alter-

native type ti corresponds to an architectural decision vari-

able ai). In contrast to alternative types, architectural de-

cision variables represent partial configurations of the ap-

626262

plication. An alternative in an alternative type also corre-

sponds to an architectural decision value (“NormalDisplay”

and “HighContrastDisplay” are connected to ai = NORM

and ai = HCONST , respectively). An architectural deci-

sion value represents a partial set of components and their

relationship between them as shown in Figures 2 and 4.

This is formulated as follows. Suppose that ai is an archi-

tectural decision variable. ai can have an architectural deci-

sion value vi ∈ V where V is a set of architectural decision

values. In this formulation, vi must correspond to an alter-

native ij ∈ I where I is a set of alternatives. This mapping

is one-to-one mapping and the number of architectural de-

cision values (i.e., |V |) and the number of alternatives (i.e.,

|I|) must be equal. Also, an alternative type ti ∈ T must

correspond to an architectural decision variable aj and their

cardinalities must be equal.

A combination of architectural decision variables com-

prises an architectural instance as shown in Figure 2. Let ei

be an architectural instance and it can be denoted by a vec-

tor of architecture decision variables, for example, ei =<

a1 = HCONST, a2 = RichGUI, a3 = ∅, · · · , an =
SIMPLEMSG >. Let E be a set of possible architec-

tural instances. We can formulate E as follows. Let |ai|
be the number of architectural decision values that ai can

take. Let |E| be the number of architectural instances that

an application can have. Let n be the number of architec-

tural decision variables, i.e., |A| = n. Then, we have the

following:

|E| = |a1| × |a2| × · · · × |an|

=

n∏

i

|ai|

The number of possible architectural instances |E| deter-

mines the complexity of the architectural selection problem.

3.4. Situation Variables and Functions

A situation variable si describes partial information of

environmental changes (examples are shown in Figure 1).

As described in Section 2, situation variables determine the

impacts of architectural decision variables on quality at-

tributes. To formally specify these impacts on quality at-

tributes, we define a situation evaluation function (or situa-

tion function) as

fg1

v1
(S) = fg1

v1
(s1, s2, · · · , sn)

fg2

v2
(S) = fg2

v2
(s1, s2, · · · , sn)

· · ·

fgk
vm

(S) = fgk
vm

(s1, s2, · · · , sn)

Readability

)(BRIGHT
READ
NORM sf

Score = r

Normal
Display

High
Contrast
Display

User
Interface User

Interface
High

Contrast
Transformer

Architectural Decision Variable ai=[NORM,HCONST]

ai ={NORM} ai ={HCONST}

Alternative Type ti

)(BRIGHT
READ
HCONST sf

Figure 4. An example that shows interre-

lationships between architectural decision

variables, alternative types, situation vari-

ables, and quality attributes.

where S is a set of situation variables, si is the i-th situa-

tion variable, vj is the j-th architectural decision value, and

gk is the k-th softgoal. n is the number of situation vari-

ables and m is the number of architectural decision values.

k is not the number of softgoals, but just an index of soft-

goals. A situation function is defined for each direct interde-

pendency between an operationalizing softgoal and softgoal

as shown in Figure 4. The number of situation functions

is determined by the number of direct interdependencies

between operationalizing softgoals and softgoals (i.e., the

number of impacts) in the application (this is defined by an

application developer who constructs the SIG of the appli-

cation). Every operationalizing softgoal (which represents

the related architectural decision value) must have at least

one interrelationship with softgoals and the same number

of situation functions; therefore, |F | ≥ |V | where |F | and

|V | are the number of situation functions and the number of

architectural alternative values, respectively.

3.5. Architectural Selection Problem

Based on the formulation described in the previous sec-

tions, this section describes the architectural selection prob-

lem in software systems at runtime. In this problem, quality

variables are used to evaluate the user’s satisfaction to the

selected architectural instance, architectural decision vari-

ables are used to represent selected alternatives in this in-

stance, and situation functions with situation variables are

used to decide impacts of an architectural instance on qual-

ity attributes. An overall description of the architectural se-

lection problem is shown in Figure 5.

The architectural selection problem is a combinatorial

optimization problem[3]. In combinatorial optimization,

one searches combinations in a problem space to find op-

636363

Q1

v1 v2

a1

Q2(g3) Qn…

)(1
1

Sf gv

vk…

a2 am

Score = r1 Score = r2 Score = rn

g1
g2

…

… …g4 gP

Alternative Type t1

)(2
2

Sf gv)(4
2

Sf gv

)(3
1

Sf gv)(3
2

Sf gv

)(Sf p
k
g
v

Alternative Type tm

Figure 5. An overview of the architectural se-

lection problem. ADVi is the i-th quality vari-

able, gi is the i-th softgoal, vi is the i-th func-

tional alternative, ai is the i-th architectural

decision variable, and f
gj

vi (S) is the situation

function of alternative vi and softgoal gj .

timal solutions according to specific evaluation criteria. In

the architectural selection problem, the problem space com-

prises combinations of architectural decision variables (i.e.,

architectural instances) described in Section 3.3 and the

evaluation criteria is the value (or utility) function described

in Section 3.1. To calculate the result of the value function,

an SIG and situation functions are required.

The goal of the architectural selection problem is to find

an optimal architectural instance based on the current sit-

uation and the user’s requirement represented by situation

variables and quality variables (with weights), respectively.

This is formulated as:

e∗ = argmax
ei∈E

U(Q, W)

= argmax
ei∈E

U(QSIG(A), W)

= argmax
ei∈E

U(QSIG(< a1, a2, · · · , an >), W)

= argmax
ei∈E

U(QSIG(ei), W)

where QSIG is an evaluation function based on an SIG

and defined as QSIG : A → Q̂. Q̂ is a set of vec-

tors that comprise every quality variable qi such as <

q1, q2, · · · , qm > where m is the number of quality vari-

ables, (i.e., |Q| = m). A is a vector of architectural de-

cision variables, such as < a1, a2, · · · , an >. This vector

represents an architectural instance ei. e∗ is an optimal ar-

chitectural instance in the current situation under the user

requirements described by quality attributes.

To find e∗, value function U(Q, W) must be evaluated

q1 q2

a b
Alternative Type t1

c d
Alternative Type t2

w1 w2

-2

+1

+4

-4
+2-3 +4-3

Figure 6. An example in which a greedy algo-

rithm cannot find an optimal solution.

through an SIG. In this approach, the evaluation process

is conducted in a bottom-up manner from architectural de-

cision variables to quality variables. For each instance ei

(i.e., a vector of architectural decision variables), we can

directly derive a corresponding set of operationalizing soft-

goals (i.e., a set of alternative values). Then, we evaluate

every situation function on edges, which are starting from

the selected operationalizing softgoals, based on the values

of the current situation variables. The results of situation

functions are aggregated into related softgoals. This aggre-

gation implies addition as shown in Figure 1.

After evaluating situation functions, the aggregated val-

ues are propagated to higher softgoals. There are three types

of relationships between sub-softgoals and higher goals: di-

rect, AND, and OR relation as shown in Figure 3. In a direct

relation, the value of a subsoftgoal is directly propagated to

the parent softgoal. In an AND relation, two or more than

two subsoftgoals are related to a higher softgoal. An AND

relation assumes the parent softgoal is satisficed if all sub-

softgoals are satisficed. Therefore, every value of subsoft-

goals is aggregated and the value of the parent softgoal is set

to their sum if all subsoftgoals have positive values. If one

subsoftgoals has a negative or zero value, the value of the

parent softgoal is set to zero. Moreover, if all subsoftgoals

have negative or zero values, the value of the parent softgoal

is set to their sum. This rule is different from the rule pro-

vided by the NFR framework[2] (the framework only marks

whether a softgoal is satisficed and unsatisficed) because it

is important to measure how much the user is satisficed or

unsatisficed in comparable numbers in the autonomous ar-

chitectural selection problem.

In an OR relation, the parent softgoal is satisficed if, at

least, one subsoftgoal is satisficed. The value of parent soft-

goal is determined as follows. When one more subsoftgoals

have positive values, the parent softgoal takes the maximum

value among the subsoftgoals; when all subsoftgoals have

negative values or zero, the parent takes the minimum value

among the subsoftgoals because the parent is definitely un-

646464

satisficed; only one subsoftgoal has a positive value, the par-

ent takes the value. Based on these propagation rules, the

values of quality variables are determined.

The problem is that evaluating the value function for

all possible architectural instances is time-consuming. The

time complexity of this problem is determined by the num-

ber of architectural decision variables as discussed in Sec-

tion 3.3. We can say that the time complexity is O(|E|) =
O(δn) where |E| is the number of architectural instances,

δ represents the average number of architectural decision

values in an architectural decision variable, and n is the

number of architectural decision variables. This implies

that an exhaustive search is not applicable for this prob-

lem (i.e., it may cause the state explosion problem). There-

fore, we can apply other approaches such as greedy algo-

rithms and dynamic programming. However, a greedy al-

gorithm for this problem does not guarantee it will con-

verge to an optimal solution. For example, with the SIG

shown in Figure 6, the greedy algorithm cannot derive an

optimal solution from the SIG. Specifically, we can deter-

mine the value of all individual operationalizing softgoals

i.e., a = −0.5, b = 0.0, c = −0.5, and d = 0.5. Now,

we know the best choice in each alternative type (b of t1
and d of t2). However, the best combination is choosing

a and c. Dynamic programming can be applied to solve

this problem, but it is also time-consuming (i.e., AND and

OR relations in SIG do not allow substructure optimality).

Therefore, it is required to provide a method to find an op-

timal solution for the architectural selection problem in a

reasonable time span.

4. Genetic Algorithm-based Architectural Se-

lection

4.1. Genetic Algorithm Procedure

A genetic algorithm[7] is a metaheuristic search method

that approximates a solution in the solution space. It is also

a well-proven method to deal with combinatorial optimiza-

tion problems. In a genetic algorithm, the target problem

is represented by a string of genes. This string is called a

chromosome. Using the chromosome representation, a ge-

netic algorithm generates an initial population of chromo-

somes. Then, it repeats the following procedure until a spe-

cific termination condition is met (usually a finite number

of generations): (1) select parent chromosomes based on

a specific crossover probability and perform crossover; (2)

choose chromosomes and mutate the chromosomes based

on a specific mutation probability; (3) evaluate fitness of

offspring; (4) select the next generation of population from

the offspring. In our approach, the above procedure will

be adopted to solve the architectural selection problem. To

do this, it is required to encode architectural instances into

ai = i-th architectural decision variable

a1 =none,< a2 =plainMsg, a3 =richGUI, a4 =nonSecureLogin, ak =none >…,ei =

ei = i-th architectural instance

0 1 2 1 0…

0121…0ci =

ci = i-th chromosome for ei

Figure 7. An example of encoding architec-

tural decision variables into chromosomes.

chromosomes, design the fitness function, and determine

the crossover and mutation operators. The following sec-

tions will describe these issues.

4.2. Representing Architectural Instances
in Genes

The main issue in applying a genetic algorithm to a cer-

tain application is encoding the problem space into a set

of chromosomes. In this approach, we encode architec-

tural instances into chromosomes because our goal is to find

an optimal instance from the set of instances. We use ar-

chitectural decision variables to encode instances as shown

in Figure 7. The i-th architectural decision variable corre-

sponds to the i-th digit of a chromosome. In this encod-

ing method, the meaning of each number 0, 1, 2, · · · , n is

just an identifier to distinguish architectural decision val-

ues belonging to a specific architectural decision variable.

Therefore, any discrete representation that can distinguish

elements can be used, e.g., alphabetic representation such

as a, b, c, d, · · · , z.

4.3. Crossover and Mutation

Another issue of applying genetic algorithms is design-

ing crossover and mutation operators to produce offspring.

Among various crossover and mutation operators, we use

two-point crossover and digit-wise probabilistic mutation.

Two-point crossover picks up two chromosomes and

chooses two (arbitrary and same) positions for each chro-

mosome. Then, it exchanges digits of the two chromosomes

between two positions. We use this technique because it

preserves more characteristics of parent chromosomes than

other crossover techniques. Further, we assume that simi-

lar chromosomes may result in similar values to the value

function. Crossover may pick up two parents in the pop-

ulation with crossover probability Pc. In other words, if

Pc = 0.5, the half of the population is chosen as parents

and the crossover operator produces the same number of

offspring.

656565

5 6 7 8 9 10 11 12 13 14

Time 0.001 0.016 0.031 0.156 0.781 4.047 21.359 115.44 617.64 3196.7

0.001 0.016 0.031 0.156 0.781 4.047 21.359
115.437

617.64

3196.703

0

500

1000

1500

2000

2500

3000

3500

Ela
ps

ed
 tim

e (
s)

of architectural decision variables

Figure 8. The performance of exhaustive

search.

After performing crossover, the algorithm performs mu-

tation. Every digit of offspring produced in the crossover

step is changed to arbitrary values with mutation probabil-

ity Pm. Note that if the mutation probability is too high, it

cannot preserve the characteristics of parents. If the prob-

ability is too low, the algorithm may fall into local optima.

Offspring produced by crossover and mutation are candi-

dates for the next generation population.

4.4. Fitness and Selection

After performing crossover and mutation, the next step

is selection. In this step, the algorithm evaluates the fitness

values of all offspring and chromosomes that have better

values survive. In this approach, the value (utility) function

described in Section 3.1 is used as a fitness function to eval-

uate chromosomes and the tournament selection strategy[8]

is used as a selection method. The tournament selection

strategy selects the best ranking chromosomes from the new

population produced by the previous steps.

The size of population determines the efficiency and ef-

fectiveness of genetic algorithms. If the size is too small,

it does not allow exploring of the search space effectively,

while too large a population may impair the efficiency.

Practically, our approach samples at least δ · l number of

chromosomes where δ is the average number of alternative

values for each architectural decision variable and l is the

length of a chromosome.

By using the procedure described in the above sections,

our approach can find the best (or reasonably good) solu-

tion from the search space when situation and requirement

changes. The next section describes the result of perfor-

mance evaluation.

5. Evaluation

This section provides the result of performance evalua-

tion of our approach. First, the performance of exhaustive

search has been measured to compare with the performance

of our approach. Then, we have measured the performance

of our approach based on the result of the previous experi-

ment.

Every experiment was performed on SCH-V740 which

is a cellular phone produced by Samsung. We implemented

our approach based on Java. We designed an arbitrary SIG

and gave a set of weight values to quality variables. Then,

we produced architectural decision variables that have five

architectural decision values on the average. For each ar-

chitectural decision value, we give an arbitrary number of

situation functions (i.e., impacts on softgoals). Those func-

tions evaluate impacts on softgoals. With this setting, we

conducted the following experiments.

5.1. Baseline

As a baseline, we have conducted an experiment that

measures the performance of exhaustive search. In this ex-

periment, we measured not only the elapsed time to exhaus-

tively search every combination of architectural decision

variables but also the best chromosome that will be used to

evaluate the performance of our approach. As stated in Sec-

tion 3.5, the architectural selection problem is a combinato-

rial optimization problem and has time complexity O(δn).
The average number of architectural decision values in each

architectural decision variable δ is five, therefore, the size of

the search space is increasing as δn where n is the number

of architectural decision variables. As shown in Figure 8,

the device can search the problem space for an optimal ar-

chitectural configuration in one second when n < 10. How-

ever, since n = 10, the elapsed time to search the problem

space is exponentially increasing. The exhaustive search

technique is not appropriate for the dynamic architectural

selection problem because it is not acceptable for users to

wait for the end of search for every moment when the cur-

rent situation or the set of weights have been changed.

5.2. Performance of Our Approach

Based on the result of the previous experiment, we con-

ducted three performance tests. The first test measures the

elapsed time required to find an (near) optimal solution from

the search space. It is difficult to anticipate the time required

to find an optimal solution because genetic algorithms are

randomized algorithms. However, we can consider a near

optimal solution that is close to the best solution (such as

the Las Vegas algorithm). In this test, we assume that the

algorithm terminates when the difference of the elitist chro-

mosome in the population and the best combination found

in the previous experiment is smaller than 5% of the best

combination (i.e., if Fit(best) − Fit(elitist) < 0.05 ·
Fit(best), then terminate the algorithm where Fit(a)

666666

5 6 7 8 9 10 11 12 13 14
Time 0.0217 0.0085 0.0039 0.001 0.0025 0.0069 0.0039 0.0069 0.0025 0.0037

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Ela
ps

ed
 tim

e (
s)

of architectural decision variables

Figure 9. Elapsed time to obtain an (near) op-

timal solution for each number of architec-

tural decision variables.

evaluates the value of chromosome a). As shown in Fig-

ure 9, the elapsed time to obtain an (near) optimal solution

by our approach is very short compared to the time of ex-

haustive search (for each number of architectural decision

variables, we ran ten tests and the elapsed time shown in

the figure is the average value of ten tests). The elapsed

time of the genetic algorithm does not increase as the num-

ber of architectural decision variables increases because it

is basically a randomized algorithm as previously stated.

The next test is conducted to verify how fast the algo-

rithm approaches the best solution. Like the Monte Carlo

simulation, we fixed the number of generations and we

recorded the value of the elitist chromosome for each gen-

eration. The result is shown in Figure 10. Note that y-axis

represents the ratio of proximity to the best solution and

the fixed number of generation is 100. For every number

of architectural decision variable, the elitist chromosome

quickly approaches to the best solution. In most cases, the

elitist is the same before 40 generations. The approaching

speed may vary for each run; however, it cannot influence

the result that it finally approaches to the best solution. Fur-

ther, the elapsed time for 100 generations is less than 0.01s.

The third test shows the result of a larger number of ar-

chitectural decision variables. For a larger number of ar-

chitectural decision variables, it takes a very long time to

find the best solution by exhaustive search. However, we

can approximate that the elitist is the best or very close to

the best by comparing with the elitist of previous genera-

tions. In other words, if the elitist has not been changed in

a very long time, it may be the best with the high probabil-

ity. In this test, the required number of generations is set to

10 · l · δ. Obviously, a large number of generations requires

more time to perform the algorithm as shown in Figure 11;

however, it is still much smaller than the time required to

perform the exhaustive search. In practice, any time more

than five or six seconds is sufficiently long for users to feel

bored. Therefore, in this device, the application that uses

40

50

60

70

80

90

100

1 11 21 31 41 51 61 71 81 91

rat
io

of
pr

ox
im

ty
to

 th
e b

es
t (%

)

of generations
ADV=5 ADV=6 ADV=7 ADV=8 ADV=9
ADV=10 ADV=11 ADV=12 ADV=13 ADV=14

Figure 10. Ratio of proximity to the best (ADV

= the number of architectural decision vari-

ables).

our approach must control the number of architectural deci-

sion variable to be not over 40.

5.3. Analysis of Performance Evaluation

We have conducted a baseline experiment and three tests.

The first test, which measured required time and genera-

tions to reach the best solution measured by the baseline

experiment, indicates that the application can find the best

combination of architectural decision variables and serve

the new and best architectural instance to the user in re-

sponse to every situation and requirement changes. How-

ever, practically, this type of execution cannot be applicable

to real applications because it is impossible for the appli-

cation to know the best solution for every situation and re-

quirement changes. Therefore, we can fix the number of

generations for each change. The second test evaluated this

type of execution and shows the algorithm can find an opti-

mal or near-optimal chromosome very fast. A fixed number

of generations can be effective for a relatively small number

of architectural decision variables; however, it may not be

effective for a large number of them. The last test showed

the result of the termination condition that finishes the al-

gorithm when the elitist has not been changed for a spec-

ified number of generations. This type of execution can

be applicable to practical systems because the number of

generations proportionally varies as the number of architec-

tural decision variables increases. In addition, even for a

large number of architectural decision variables, the algo-

rithm shows good performance compared to the exhaustive

search.

6. Related Work

Floch et al. [4] proposed a utility-based adaptation

scheme. This approach assumes that an adaptable appli-

cation operates on the adaptation middleware that they have

676767

0

1

2

3

4

5

6

7

8

20 25 30 35 40 45 50

Ela
ps

ed
 Ti

me
 (s

)

of architectural decision variables

Figure 11. Required time to perform the tests

to determine the elitist is the best (or very

close to the best).

previously proposed[6], and the middleware monitors the

current user context and system context. Based on the mon-

itored context data, the middleware dynamically changes

the application’s configuration. Possible configurations are

component types and their implementations. In this ap-

proach, planning is performed by mapping component im-

plementations and properties or utility functions. When a

user or system context changes, the middleware evaluates

the change and compares it to the utility functions and prop-

erties of the current configuration. This adaptive planning

effectively reflects contextual changes; however, they does

not deal with the priority issue in which the user changes

his or her preference about quality attributes.

Capra et al. [1] described the conflict problem in mobile

applications. To deal with conflicts, they suggested a mi-

croeconomic mechanism that performs an (virtual) auction.

In this mechanism, the mobile application is aware of the

resource status of the device and user profiles. The applica-

tion resolves intra and interprofile conflict problems using a

game theoretic mechanism. Although this approach does

not deal with architectural selection or adaptation issues,

the idea, which autonomously selects functions of mobile

applications at runtime, is related to our approach. The dif-

ference is that our approach focuses on the optimal archi-

tectural selection problem while their approach focuses on

the conflict resolution.

7. Conclusions

As the software market extends its territory to mobile

and ubiquitous environments, software systems are exposed

to various situations and requirements. This requires the

mobile application to change its architectural configuration

in response to situation and requirement changes. This is-

sue can be modeled by the architectural selection problem

in which a mobile application searches its possible archi-

tectural instance and selects an optimal one to the current

situation and user requirements.

In this paper, we illustrated a motivating example that

requires architectural selection and formulated the archi-

tectural selection problem using softgoal interdependency

graphs. Then, we proposed a novel approach to the ar-

chitectural selection problem based on genetic algorithms.

This approach enables a software system to autonomously

search possible architectural instances (the search space) to

find an optimal instance to the current situation and require-

ments within a short time. The evaluation of this approach

showed our approach can accelerate the architectural selec-

tion of an application even if the application must search a

considerable number of instances2.

References

[1] L. Capra, W. Emmerich, and C. Mascolo. CARISMA:

Context-aware reflective middleware system for mobile ap-

plications. IEEE Trans. Software Eng., 29(10):929–945,

2003.
[2] L. Chung, B. A. Nixon, , E. Yu, and J. Mylopoulos. Non-

Functional Requirements in Software Engineering. Kluwer

Academic Publishers, 1999.
[3] W. J. Cook, W. H. Cunningham, W. R. Pulleyblank, and

A. Schrijver. Combinatorial Optimization. Wiley, 1997.
[4] J. Floch, S. O. Hallsteinsen, E. Stav, F. Eliassen, K. Lund,

and E. Gjørven. Using architecture models for runtime

adaptability. IEEE Software, 23(2):62–70, 2006.
[5] D. Garlan, S.-W. Cheng, A.-C. Huang, B. R. Schmerl, and

P. Steenkiste. Rainbow: Architecture-based self-adaptation

with reusable infrastructure. IEEE Computer, 37(10):46–54,

2004.
[6] S. Hallsteinsen, E. Stav, and J. Floch. Self-adaptation for

everyday systems. In WOSS ’04: Proceedings of the 1st

ACM SIGSOFT workshop on Self-managed systems, pages

69–74, New York, NY, USA, 2004. ACM Press.
[7] J. H. Holland. Adaptation in Natural and Artificial Systems.

University of Michigan Press, Ann Arbor, 1975.
[8] B. L. Miller, B. L. Miller, D. E. Goldberg, and D. E. Gold-

berg. Genetic algorithms, tournament selection, and the ef-

fects of noise. Complex Systems, 9:193–212, 1995.
[9] N. Subramanian and L. Chung. An nfr-based framework for

aligning software architectures with system architectures. In

Proceedings of the International Conference on Software

Engineering Research and Practice & Conference on Pro-

gramming Languages and Compilers, SERP 2006, Las Ve-

gas, Nevada, USA, June 26-29, 2006, Volume 2, pages 764–

770, 2006.
[10] D. Sykes, W. Heaven, J. Magee, and J. Kramer. From goals

to components: a combined approach to self-management.

In SEAMS ’08: Proceedings of the 2008 international

workshop on Software engineering for adaptive and self-

managing systems, pages 1–8, New York, NY, USA, 2008.

ACM.

2Due to space limitation, we provide a supplemental material that

provides discussion and future work of our approach. Visit this link:

http://seapp.sogang.ac.kr:8080/discussion.pdf.

686868

