
Improving Fault Localization with External Oracle by Using
Counterfactual Execution

JONGCHAN PARK, FuriosaAI, Seoul, Korea
TAE EUN KIM, KAIST, Daejeon, Korea
DONGSUN KIM, Kyungpook National University, Daegu, Korea
KIHONG HEO, KAIST, Daejeon, Korea

We present Flex, a new approach to improve fault localization with external oracles. Spectrum-based fault
localization techniques estimate suspicious statements based on the execution trace of the test suite. State-
of-the-art techniques rely on test oracles that internally exist in the program. However, programs often
have external oracles that observe their behavior from outside. This in turn hinders fine-grained and accu-
rate estimation of suspicious statements in practice because the correctness of each execution can only be
observed at termination. In this article, we aim to address this problem by observing counterfactual execution
traces, which enable fine-grained estimation even without precise internal oracles. We observe two types of
counterfactual scenarios related to different types of test cases: When the branch condition is set to a Boolean
constant, (1) if most of the passing test cases still pass, we consider the newly executed statements in the
branch statement as unrelated to the failure; (2) if failing test case still fails, we also consider the originally
executed statements as unrelated to the failure. We evaluated the performance on widely used C and Java
programs. Flex improves the accuracy of state-of-the-art SBFL techniques on C and Java programs by 24%
and 22% on average, respectively.

CCS Concepts: • Software and its engineering→ Software testing and debugging;

Additional Key Words and Phrases: Fault Localization, SBFL, Counterfactual Execution

ACM Reference format:
Jongchan Park, Tae Eun Kim, Dongsun Kim, and Kihong Heo. 2025. Improving Fault Localization with External
Oracle by Using Counterfactual Execution. ACM Trans. Softw. Eng. Methodol. 34, 2, Article 35 (January 2025),
22 pages.
https://doi.org/10.1145/3695997

This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government
(MSIT) (NRF-2021R1A5A1021944 and 2021R1I1A3048013). Additionally, the research was supported by Kyungpook National
University Research Fund, 2024.
Authors’ Contact Information: Jongchan Park (corresponding author), FuriosaAI, Seoul, Korea; e-mail: jongchan.park@
furiosa.ai; Tae Eun Kim, KAIST, Daejeon, Korea; e-mail: taeeun.kim@kaist.ac.kr; Dongsun Kim, Kyungpook National
University, Daegu, Korea; e-mail: darkrsw@knu.ac.kr; Kihong Heo, KAIST, Daejeon, Korea; e-mail: kihong.heo@kaist.ac.kr.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2025 Copyright held by the owner/author(s).
ACM 1557-7392/2025/1-ART35
https://doi.org/10.1145/3695997

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 2, Article 35. Publication date: January 2025.

https://orcid.org/0009-0009-8074-1768
https://orcid.org/0009-0009-2442-8646
https://orcid.org/0000-0003-0272-6860
https://orcid.org/0000-0003-2671-0142
https://doi.org/10.1145/3695997
mailto:jongchan.park@furiosa.ai
mailto:jongchan.park@furiosa.ai
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3695997
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3695997&domain=pdf&date_stamp=2025-01-24

35:2 J. Park et al.

1 Introduction
Spectrum-based fault localization (SBFL) is a widely used technique for localizing faults in
software systems. The intuition behind SBFL is that a program statement is more likely to be faulty
if the statement is executed more often in failing executions than in passing executions. There have
been many formulas to realize this idea such as Ochiai [1], Tarantula [8, 9], and Dstar [24].

However, not all statements executed in failing executions are faulty. Nonetheless, the accuracy
of SBFL is often highly challenged by the presence of program statements that are spuriously
correlated to the fault. For example, a correct statement that happens to be executed only in failing
executions is unfairly assigned to a high suspiciousness score. Due to the sparse test suite and
the limited number of failing test cases in practice, it is difficult to distinguish between a correct
statement and a faulty statement by only using the limited execution profile.

Many recent SBFL approaches [13, 23, 29, 31] infer faulty statements by using test oracles that
internally exist in the program under test in the form of assertions or unit tests. Such internal
oracles allow users to observe the internal state of the program such as the output of a function
or the value of a variable. For example, many Java libraries in a well-known fault benchmark,
Defects4J [10], have a large number of unit tests as internal oracles. Those approaches improve the
accuracy of SBFL by using various techniques including dynamic analysis or probabilistic models.

Unfortunately, end-user programs often lack such internal oracles but have external oracles,
such as an expected output, that observe the behavior of the program from outside. For example,
gzip, a widely used compression utility, tests the correctness of its compression and decompression
functions by comparing the output of the decompression function with the original input.1 This in
turn hinders fine-grained and accurate fault localization because the internal state of the program
is hidden and the correctness of each execution can only be observed at termination after long
execution.

To address this problem, we present Flex,2 a new approach to improve fault localization with
external oracles by observing counterfactual execution traces. Flex first selects a set of branch
statements in the original program and generates variant programs each of which has the branch
predicate set to a Boolean constant. Then, we observe two types of counterfactual scenarios from
the variants: (1) if the branch condition is set to a Boolean constant and most of the passing test
cases still similarly pass, we consider the newly executed statements in the branch statement as
unrelated to the failure; (2) if the branch condition is set to a Boolean constant and the failing
test case still similarly fails, we also consider the originally executed statements as unrelated to
the failure. Finally, Flex combines the execution profiles of variant programs and computes the
suspiciousness scores for each statement in the original program. Thus, Flex augments insufficient
coverage profile with counterfactual executions to improve the accuracy of SBFL, without relying
on internal oracles.

We have extensively evaluated the effectiveness of Flex on a large suite of C and Java programs:
65 C programs and 393 Java programs from the ManyBugs [5], CoreBench [2], and Defects4J [10]
benchmarks.The results show that Flex significantly improves the accuracy of state-of-the-art SBFL
techniques for the C benchmarks, which do not have internal oracles. The accuracy is improved
by 24% on average in line-level and by 24% on average in function-level fault localization. Our
results on the Java benchmark show that Flex is also effective when internal oracles are available.
In particular, Flex improves the accuracy by 22% compared to SmartFL [29], the state-of-the-art
technique using internal oracles. Notably, Flex remains highly effective even when internal oracles
are available, especially for complex programs and test cases.

1https://git.savannah.gnu.org/cgit/gzip.git/tree/tests/z-suffix
2The name comes from Fault Localization with EX ternal oracle by using counterfactual execution.

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 2, Article 35. Publication date: January 2025.

https://git.savannah.gnu.org/cgit/gzip.git/tree/tests/z-suffix

Improving Fault Localization with External Oracle 35:3

The main contributions of this article are as follows:

—We propose a novel SBFL technique called Flex. This technique aims to improve the accuracy
of SBFL with external oracles by using counterfactual executions.

—We present an effective algorithm for collaboratively computing suspiciousness scores from
variant programs that have similar behavior to the original program. We also present a method
to compute the similarity using approximated oracles.

—We have evaluated Flex on a large number of C and Java benchmarks and demonstrated the
performance. The results show that Flex outperforms the state-of-the-art SBFL techniques.

—We publicize Flex’s implementation and the experimental data to support open science:
https://github.com/prosyslab/flex-artifact.

2 Motivation
2.1 Motivating Example
Figure 1(a) is a fault example designed to effectively illustrate our approach. The program
abs_sum_div reads three integers G , ~, and I from the user input, and stores the result (|G | + |~ |)/I
into file result.txt. The program has a fault at Line 3 that incorrectly handles integer-overflow.
Because of this faulty expression, the program produces a wrong result, an overflowed negative
number instead of 2, when computing (MAXINT + MAXINT)/MAXINT.

The program is tested by an external oracle (a bash script) shown in Figure 1(b). The oracle
executes the program with different inputs, and checks the results in the output file. The oracle
checks the result by comparing the output file with a reference result.

2.2 Background: SBFL
Fault localization is the process of identifying the location of a fault in a program. Recently, SBFL
techniques [1, 9, 13, 23, 24, 29, 31] are prevailing as they can identify the fault location effectively
and efficiently. These techniques compute a suspiciousness score for each program statement after
analyzing the correlation between the execution of a program statement and the program failure.
The intuition behind SBFL is that a program statement is more likely to be faulty if it is visited
more often by failing executions than passing executions.

While there have been various techniques proposed to improve the accuracy, most of them require
internal oracles that exist in the program under test such as assertions or unit tests. Therefore,
such techniques cannot be directly applicable to our example. Instead, we use a widely used
SBFL technique, Ochiai [1], that is based on code coverage and test results. Ochiai computes the
suspiciousness score of a program statement B as follows:

Ochiai(B) =
45 (B)√

{45 (B) + =5 (B)} · {45 (B) + 4? (B)}
, (1)

where 45 (B) and 4? (B) are the numbers of failing and passing tests that execute the program
statement B while =5 (B) is the number of failing tests that do not execute B .

SBFL often assigns high suspiciousness scores to correct statements whose coverage is spuriously
correlated to the faulty statement. For example, Lines 20 and 8 in Figure 1(a) are correct statements.
However, the statements are assigned high suspiciousness scores because the failing test case
happens to cover them and one passing test does not cover them. We need an appropriate tie-
breaking mechanism to address this challenge.

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 2, Article 35. Publication date: January 2025.

https://github.com/prosyslab/flex-artifact

35:4 J. Park et al.

Fig. 1. Motivating example.

2.3 Challenges: External Oracles
However, SBFL techniques often produce inaccurate results. Table 1 shows the suspiciousness
scores for each line in the example using the Ochiai formula (Equation (1)). Note that the faulty
statement at Line 3 is ranked at the 6th position among 16 lines.3 More precisely, the suspiciousness
score of the faulty statement 3 is 0.57, while a correct line, Line 8 has the same score of 0.57.

While recently proposed techniques claim to address the above challenge, they highly rely on
internal oracles such as assertions or unit tests [29]. Based on the internal oracles, they can precisely
analyze the correlation between the statements and test failure by using various methods such

3There are various ways to address ties in fault localization [26]. However, we use a Naïve approach to rank the faulty
statement at the lowest position among the tied lines.

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 2, Article 35. Publication date: January 2025.

Improving Fault Localization with External Oracle 35:5

Table 1. The Execution Profile of the Program Listed
in Figure 1

Line Pass1 Pass2 Pass3 Fail1 Score Rank

3 (fault) • • - • 0.57 6 (5)
5 • • - • 0.57 6 (5)
6 - - - - 0.00 16 (4)
8 • • - • 0.57 6 (5)
13 • • • • 0.50 12 (6)
15 • • • • 0.50 12 (6)
16 - - • - 0.00 16 (4)
17 - - • - 0.00 15 (3)
20 • • - • 0.57 6 (5)
22 • • • • 0.50 12 (6)
23 - - - • 1.00 1 (1)
25 • • • • 0.50 12 (6)
26 - - • - 0.00 16 (4)
28 • • - • 0.57 6 (5)
30 • • • • 0.50 12 (6)
31 • • • • 0.50 12 (6)

Result Ø Ø Ø 7

ColumnsPass= and Fail= represent the coverage of the nth passing and
failing tests. In the column Score, each line is assigned a suspiciousness
score computed by the Ochiai formula. Column Rank shows the rank
of each line. The number in the parenthesis is the number of lines that
have the same score.

as static analysis, dynamic analysis, or probabilistic models. Suppose there exists a unit test that
checks the correctness of the sum_div function: assert(sum_div(MAXINT,MAXINT,MAXINT) ==
2). Then, one can precisely estimate that Line 3 is a faulty statement because the only statement
that potentially produces a negative number is the overflowed addition.

Unfortunately, programs often lack such internal oracles but have external oracles such as the shell
script shown in Figure 1(b). Such external oracles check the behavior of the program under test by
comparing various information observable from outside. For example, gzip, a file compression utility,
may have a test script that the original test file is preserved after compression and decompression.

3 Approach
We propose a novel approach, Flex, to address these challenges. Flex is based on two ideas: (1)
counterfactual execution and (2) approximated oracle. The intuition behind Flex is as follows:

—Suppose a branch condition (e.g., Line 15) is set to a Boolean constant (e.g., False) that is
the same value as in the failing executions. Then, all the passing test cases will cover the
statements in the corresponding branch in this variant program. If most of the passing test
cases still similarly pass in this counterfactual execution, the newly executed statements (e.g.,
Line 20) in the branch are likely to be unrelated to the failure.

—Similarly, suppose a branch condition (e.g., Line 5) is set to a Boolean constant (e.g., True)
that is the flipped value as in the failing executions. Then, all the failing test cases will cover
the statements in the opposite branch in this variant program. If all the failing test cases still

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 2, Article 35. Publication date: January 2025.

35:6 J. Park et al.

Fig. 2. Overview of Flex.

similarly fail, the no longer executed statements (e.g., Line 8) in the branch are likely to be
unrelated to the failure.

Flex has three major steps other than ordinary SBFL techniques as shown in Figure 2: (1) program
variant generation, (2) program variant selection, and (3) collaborative coverage collection. We
describe each step in detail in the rest of this section.

3.1 Program Variant Generation for Counterfactual Execution
First, we generate program variants with counterfactual assumptions. Flex identifies all conditional
statements covered by the failing test cases. In the example shown in Figure 1, all the conditional
statements at Lines 15, 22, 25, and 5 are selected. Then, we derive two sets of candidate variants
Ppcand = {%15, %22, %25, %5} and Pfcand = {%15, %22, %25, %5} of program variants. We denote %! and %

!

as the program variants whose branch conditions at line ! are set to True and False, respectively.
For example, the variant %15 of the example is the same as the original one except that the condition
of Line 15 is set to False. Each program in Ppcand is derived by changing each branch condition to
be the same value as in the failing execution. This set of programs will be used for counterfactual
executions with the passing test cases. Similarly, each program in Pfcand is derived by changing
each branch condition to be the inverted value as in the failing execution. This set of programs will
be used for counterfactual executions with the failing test cases.

3.2 Program Variant Selection Using Approximated Oracles
Next, we select the variants that exhibit similar behavior to the original program. We define two
sets Ppass ⊆ Ppcand and Pfail ⊆ Pfcand , each of which is a set of variants whose behavior is similar
to the original program modulo the passing and failing test cases, respectively. In order to define
the similarity, we use an approximated oracle for each set of variants.

The approximated oracle for Ppass checks whether most4 of the passing test cases still pass with
the variant % ′. In the example, the variant programs %15 and %22 are selected because they preserve
all the passing test cases. On the other hand, the other variant programs are discarded because they
both fail with two passing test cases out of three.

The approximated oracle for Pfail checks whether all the failing test cases still fail with the variant
% ′ and the call sequence of the failing test cases is the same to the original one. The reason we check
for all the failing test cases is that the failing test cases are often limited in number. While programs

4In our experiment, we set the threshold to 90%.

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 2, Article 35. Publication date: January 2025.

Improving Fault Localization with External Oracle 35:7

often have a number of passing test cases, they often have only a few (typically one or two) failing
test cases. The reason we additionally check for the call sequence of the failing test case is that the
failure reported by the external oracle is often coarse-grained. It is difficult to determine whether
the failure of a test is caused by the same reason as the original one. Thus, failing with the external
oracle is a necessary but not sufficient condition for preserving the original faulty behavior. In the
example, the variant program %22 and %5 is selected because the call sequence does not change from
the original program. Note that we only consider the call sequence of the user-defined functions
(i.e., abs, sum_div) here in order to avoid the noise from the library functions (e.g., printf). In
addition to user-defined functions, we also consider the use of macros as a function call for C
programs. On the other hand, the other variants are discarded because they call different functions,
or even omit originally called functions. For example, %25 is discarded because it omits calling the
function sum_div, which contains the faulty statement.

3.3 Collaborative Coverage Collection
Finally, we collect the collaborative coverage across the selected variants, which is used to compute
the suspiciousness score of each statement of the original program. Unlike conventional SBFL
which uses a single program, we collaboratively use the execution profile of the selected variants.
We aggregate the coverage of the variants into a single coverage profile. Collaborative coverage of
the passing test cases is defined as the average passing coverage count of each statement across
the variants in Ppass . The collaborative coverage of the failing test cases is similarly defined with
variants from Pfail including the original version, but we use the minimum coverage count rather
than the average.

The choice of our aggregation scheme is based on the characteristics of the variants. Note that
the level of confidence in the selection is different between the two sets, Pfail and Ppass . The variants
from Pfail are selected by directly comparing the faulty behavior to the original one using the failing
test case. Therefore, we can be confident that the selected variants still preserve the faulty behavior
and the no longer executed statements are unrelated to the fault. Thus, we aggressively aggregate
the information using the minimum. On the other hand, the variants from Ppass are selected based
on the similarity of the passing behavior. This is still informative, yet indirect evidence of not being
related to the fault. For example, a newly executed statement of a certain variant could be the faulty
statement even if the variant preserves the passing behavior. It would be dangerous to ignore the
newly executed statement in this case. Thus, we conservatively aggregate the information using
the average.

Table 2 shows the summarized execution profile of the program variants of the example in
Figure 1. Note that variants %15 and %22 alter the passing coverage count of Lines 20 and 23 from
2 to 3, and from 0 to 3, respectively. Then, the passing test coverage count of Lines 20 and 23 for
the collaborative coverage is calculated as 2.5, which is the average of 2 and 3, and 1.5 which is
the average of 0 and 3, respectively. For now, let us ignore Lines 16 and 17 because they were not
executed by the failing test in the original program. Using the minimum failing coverage count
enables Flex to utilize the variants from Pfail more effectively. In Table 2, %22 and %5 each alters the
failing coverage count of Lines 23 and 8 from 1 to 0. Since we use the minimum failing coverage
count, the failing collaborative coverage of Lines 23 and 8 becomes 0. Note that %5 alters the
failing coverage count of Line 6 from 0 to 1. However, since we also consider the original program
to compute the minimum failing coverage count, the failing collaborative coverage of Line 6
becomes 0.

Finally, the suspiciousness score is computed with the collaborative coverage. Specifically, the
score of Line 20 in the example program, which was 0.57 with Ochiai, becomes 0.53 due to the
collaborative passing coverage. The score of Lines 23 and 8, which were also 0.57 with Ochiai,

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 2, Article 35. Publication date: January 2025.

35:8 J. Park et al.

Table 2. The Summarized Execution Profile of Program Variants

Ppass Pfail
Line %orig %15 %22 %22 %5 Coll. Cov. Score Rank

3 (fault) (2, 1) (2, -) (2, -) (-, 1) (-, 1) (2, 1) 0.57 3 (3)
5 (2, 1) (2, -) (2, -) (-, 1) (-, 1) (2, 1) 0.57 3 (3)
6 (0, 0) (0, -) (0, -) (-, 0) (-, 1) (0, 0) 0.00 16 (6)
8 (2, 1) (2, -) (2, -) (-, 1) (-, 0) (2, 0) 0.00 16 (6)
13 (3, 1) (3, -) (3, -) (-, 1) (-, 1) (3, 1) 0.50 10 (6)
15 (3, 1) (3, -) (3, -) (-, 1) (-, 1) (3, 1) 0.50 10 (6)
16 (1, 0) (0, -) (1, -) (-, 0) (-, 0) (0.5, 0) 0.00 16 (6)
17 (1, 0) (0, -) (1, -) (-, 0) (-, 0) (0.5, 0) 0.00 16 (6)
20 (2, 1) (3, -) (2, -) (-, 1) (-, 1) (2.5, 1) 0.53 4 (1)
22 (3, 1) (3, -) (3, -) (-, 1) (-, 1) (3, 1) 0.50 10 (6)
23 (0, 1) (0, -) (3, -) (-, 0) (-, 1) (1.5, 0) 0.00 16 (6)
25 (3, 1) (3, -) (3, -) (-, 1) (-, 1) (3, 1) 0.50 10 (6)
26 (1, 0) (1, -) (1, -) (-, 0) (-, 0) (1, 0) 0.00 16 (6)
28 (2, 1) (2, -) (2, -) (-, 1) (-, 1) (2, 1) 0.57 3 (3)
30 (3, 1) (3, -) (3, -) (-, 1) (-, 1) (3, 1) 0.50 10 (6)
31 (3, 1) (3, -) (3, -) (-, 1) (-, 1) (3, 1) 0.50 10 (6)

Columns %= denotes the number of passing (G) and failing (~) tests that cover each line
by the notation of (G, ~) . The collaborative coverage, Coll. Cov., is derived according to
Section 3.3. Each suspiciousness score in column Score is computed with the collaborative
coverage. Any coverage or score that has been changed from the original version is
highlighted in red.

becomes 0.00 mainly due to the collaborative failing coverage. Such degradation of the scores of
Lines 20, 23, and 8 successfully puts Line 3, which is the faulty statement, at the top of the ranking
with two ties (i.e., 3rd rank) among 16 lines while the original rank was the 6th.

4 The Flex Framework
In this section, we formalize Flex. The overall algorithm is presented in Algorithm 1. Flex takes as
input a program P, a passing test suite Tpass , a failing test suite Tfail , the approximated oracles Opass
and Ofail each for the passing and failing test cases, respectively, and a fault localization formula Ψ.

Flex first generates variant programs with counterfactual assumptions. We collect all predicates
in the conditional statements (Line 1) and the coverage information (Line 2) from the original
program. Based on the execution results of the failing test cases, Flex generates two sets of candidate
variant programs: Ppcand and Pfcand (Lines 3, 4). For each predicate for which all the failing test
cases evaluate to the same Boolean value, Flex generates a variant program for Ppcand by setting
the predicate to the evaluated value (Line 3), and for Pfcand by setting the predicate to an inverted
value (Line 4).

Next, Flex selects the variants based on the approximated oracles. For each variant in Ppcand ,
Flex checks whether the variant has a similar passing behavior modulo Opass (Line 7). If so, the
variant is added to the set of passing variants Ppass (Line 8). Similarly, for each variant in Pfcand ,
Flex checks whether the variant has a similar failing behavior modulo Ofail (Line 10). If so, the
variant is added to the set of failing variants Pfail (Line 11).

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 2, Article 35. Publication date: January 2025.

Improving Fault Localization with External Oracle 35:9

Algorithm 1: Flex (P,Tpass,Tfail,Opass,Ofail,Ψ) where P is the Program Under Test, Tpass
and Tfail are the Passing and Failing Test Suites, Opass and Ofail are the Approximated Oracles
for the Passing and Failing Test Cases, and Ψ is the Fault Localization Formula

1 Preds← GetAllPredicates(P)
2 Cov% ← Run(%,Tpass,Tfail)
3 Ppcand ← GenPassVariantCandidate(%,Cov%)
4 Pfcand ← GenFailVariantCandidate(%,Cov%)
5 Ppass,Pfail ← 〈∅, ∅〉
6 foreach %cand ∈ Ppcand do
7 if Opass (%cand ,Tpass) then
8 Ppass ← Ppass ∪ {%cand} // Variants selected by Opass

9 foreach %cand ∈ Pfcand do
10 if Ofail (%cand ,Tfail) then
11 Pfail ← Pfail ∪ {%cand} // Variants selected by Ofail

12 �>Efail ← GetMinCov(P,Pfail,Tfail)
13 �>Epass ← GetAvgCov(Ppass,Tpass)
14 �>E ← CombineCov(�>Epass,�>Efail) // Collaborative coverage

15 return Ψ(�>E)

We define the approximated oracle for the passing test cases Opass as follows:

Opass (%cand,Tpass) ⇐⇒
[
NumberOfPass(%cand,Tpass)

|Tpass |
≥ f

]
.

We check whether the ratio of the number of passing test cases to the total number of passing test
cases is greater than or equal to f . The intuition is that if the variant passed with the same test
cases as the original program, it is more likely to have a similar behavior to the original program.
The threshold f is a parameter of Flex and is set to 0.9 in our evaluation.

The approximated oracle for the failing tests is formally defined as follows:

Ofail (%cand,Tfail) ⇐⇒ ∀t ∈ Tfail .
(
�0;;(4@(%cand, t) =�0;;(4@(P, t)

)
.

We check whether the subsequent call sequence after the altered predicate is the same as the
original program with each of the failing tests. Note that the altered predicate may introduce a new
fault. In such cases, it is difficult to check whether the same fault still exists in the variant without
internal oracles. Thus, Flex uses this approximated oracle to estimate the presence of the same
fault in the variant.

Finally, Flex collects the collaborative coverage from the variants inPfail andPpass , then computes
the suspiciousness scores. For the collaborative coverage of the failing test cases, we compute
the minimum coverage across the variants of Pfail and the original program P (Line 12). The
reason we include the original program is to provide a coverage of 0 for the statements that were
not covered in the original program, thus filtering it out. For the collaborative coverage of the
passing test cases, we compute the average coverage across the variants of Ppass (Line 13). Then,
we compute the suspiciousness scores for each statement in the original program using the given
fault localization formula Ψ (Line 14). Table 3 shows the examples of the SBFL formulas that can be
used as Ψ.

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 2, Article 35. Publication date: January 2025.

35:10 J. Park et al.

Table 3. Examples of SBFL Formulas

Ochiai [1]
45 (B)√

{45 (B) + =5 (B)} · {45 (B) + 4? (B)}

Tarantula [9]

45 (B)
45 (B) + =5 (B)

45 (B)
45 (B) + =5 (B)

+
4? (B)

4? (B) + =? (B)

Dstar [24]
45 (B)∗

4? (B) + =5 (B)

Here, 45 (B) and 4? (B) are the numbers of failing and passing
tests that execute the program statement B while =5 (B) and
=? (B) are the number of failing and passing tests that do not
execute B . The symbol ∗ in Dstar’s formula is a variable, which
is set to 2 in this article according to the previous work [20].

5 Evaluation
We designed experiments to answer the following research questions (RQs):

RQ1. How effectively does Flex improve the state-of-the-art SBFL techniques?
RQ2. How effective is Flex with internal oracles?
RQ3. How does the approximated oracle impact the performance of Flex?
RQ4. How does the aggregation scheme for the collaborative coverage impact the performance of

Flex?
RQ5. How does the variants from Ppass and Pfail each contribute to the performance of Flex?

5.1 Setting
Environment. All experiments were performed on Ubuntu 20.04 with Intel Xeon 2.9 GHz CPU and
500 GB RAM.
Implementation. We implemented Flex with approximately 4,800 lines of OCaml code and 600

lines of Java code. Flex uses the CIL [17] and Spoon [19] frameworks to instrument target C and
Java programs, respectively, and invert conditions.

Benchmark. Our experiments utilize multiple C and Java defect benchmarks as listed in Table 4
to evaluate Flex. The benchmarks include 65 real-world C programs and 393 Java programs. For
C, we use the gzip, libtiff, and php from ManyBugs [5] and make, and grep from CoreBench [2]
benchmarks that are widely used in the fault localization literature [3, 6, 11, 15, 23]. Each of the
faults is a real-world fault in popular C programs that are associated with external oracles provided
as shell scripts. Since Flex is based on branch condition manipulation, we excluded faults that
involve unconditional jumps such as goto. We further excluded faults in the benchmarks for
practical issues such as unavailable docker images and build errors. Note that we do not list all
the faulty versions for the sake of the presentation. The comprehensive list can be found in our
artifact. For Java, we used Chart, Closure, Lang, Math, Mockito, and Time from Defects4J 1.0.1 [10]
that contains 393 faults in 6 different Java projects. Defects4J is a set of real-world faults in popular
Java programs with internal oracles as unit tests. This is also a widely used benchmark in the fault
localization literature [12, 21, 29, 33]. In total, we use 393 faults for Java benchmarks. We use both
C and Java benchmarks to answer RQ1. For the rest of the RQs, we focus on the C benchmarks.

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 2, Article 35. Publication date: January 2025.

Improving Fault Localization with External Oracle 35:11

Table 4. Benchmark Characteristics

Language Project Faults Avg. # Tests Avg. Size (KLOC)
gzip 5 7 470
libtiff 11 14 382

C php 31 7,716 1,059
make 9 109 38
grep 9 33 561

Total 65 3,702 689

Chart 26 222 132
Closure 133 2,981 216

Java Lang 64 173 50
Math 106 162 104
Mockito 38 125 45
Time 26 2,552 27

Total 393 1,276 124

Faults denotes the number of faults in the project, each associated with a specific
version. Avg. # Tests denotes the average number of test cases in each version.
Avg. Size denotes the average lines of code per faulty version.

Baselines. For the C benchmarks, we apply Flex to three different SBFL techniques: Ochiai [1],
Tarantula [8, 9], and Dstar [24]. They all compute the suspiciousness score of each statement using
the code coverage and their own formulas. We excluded other tools because they either do not
work with external oracles or do not support C programs. For Java, we additionally use SmartFL
[29], a state-of-the-art fault localization technique that utilizes internal oracles. SmartFL extracts
the internal state of the program from the oracle and derives the probabilistic model for fault
localization. Thus, we could not run SmartFL on the C benchmarks because most of them do
not have such internal oracles but only external oracles. We excluded Flip [27] because Flip is
not publicly available, and we did not receive a response from the authors despite our attempts.
However, the conceptual comparison between Flex and Flip is discussed in Section 7.

Evaluation Criteria. We evaluate the effectiveness of Flex in terms of the number of statements
to examine before finding the faulty statement. More precisely, for each project, we sum up the
number of statements that are ranked higher than the actual faulty statements. In case of multiple
faulty statements, we consider the highest ranked faulty statement. Following the previous works
[29, 31, 33], we also evaluate the effectiveness of Flex in function-level ranking with C benchmarks.
We do not use statistical tests such asMann-Whitney U (MWU) test because Flex, along with the
baseline tools, is deterministic while the purpose of the MWU test is to compare two distributions
influenced by randomness to determine if they are significantly different. Furthermore, previous
literature on SBFL [27, 29, 33] has not utilized statistical tests either, including the MWU test. One
factor that hinders the evaluation of fault localization tools is the presence of ties in the ranking.
For example, Ochiai assigns a suspiciousness score to a faulty statement while assigning up to
600 statements with the same score.5 Thus, handling these ties is crucial for the evaluation. We
follow the commonly used practices in the fault localization literature. We assume the worst case
and report the faulty statement ranked as the last among its techniques following the previous
work [6–8, 18].

5Case 2010-11-27-eb326f9-eec7ec0 of the Manybugs benchmark, in libming project.

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 2, Article 35. Publication date: January 2025.

35:12 J. Park et al.

Table 5. Performance of Baseline Tools and Flex on the C Benchmarks

Ochiai Tarantula Dstar

Level Program Vanilla Flex Improv. Vanilla Flex Improv. Vanilla Flex Improv.

gzip 2,233 1,881 16% 2,233 1,881 16% 2,233 1,881 16%
libtiff 5,914 4,827 18% 6,193 5,170 17% 5,805 4,825 17%

Line php 1,396 1,135 19% 1,443 1,094 24% 1,442 1,088 25%
make 430 292 32% 430 292 32% 430 292 32%
grep 1,819 846 53% 1,819 842 54% 1,819 842 54%

Total 11,792 8,981 24% 12,118 9,279 23% 11,729 8,928 24%

gzip 172 166 3% 172 166 3% 172 166 3%
libtiff 632 531 16% 646 540 16% 632 531 16%

Function php 552 391 29% 552 388 30% 552 388 30%
make 1,190 866 27% 1,190 866 27% 1,190 866 27%
grep 311 95 69% 311 95 69% 311 95 69%

Total 2,857 2,049 28% 2,871 2,055 28% 2,857 2,046 28%

Each baseline is augmented with Flex, and is compared to the original version, denoted as Vanilla. Both columns
report the total number of statements that must be examined to locate all the faults in the project. Improv. reports the
improvement ratio of Flex over the vanilla version of the baselines. We report the rank of the faulty statement as the
last among its ties.

5.2 Effectiveness of Flex
5.2.1 C Benchmarks. This section evaluates the effectiveness of Flex compared to the baseline

systems for the C benchmarks. Note that all the programs have external test oracles such as bash
scripts. We instantiate Flex upon three different baseline SBFL techniques: Ochiai [1], Tarantula
[8, 9], and Dstar [24]. We regularized the scores produced by Dstar between 0 and 1 with the
standard min-max normalization because its maximum score exceeds 1 by the nature of its formula.

Table 5 shows the overall evaluation results in the statement level ranking for the cases. For 64
cases out of 65 faults, Flex significantly improves the quality of ranking across all the baselines. In
the statements level ranking, Flex can improve the rank by 24%, 23%, and 24% on average over
each baseline. Overall, Flex is consistent in improving the ranking quality across all the baselines.

It is notable that Flex shows an exceptional tie-breaking ability. While the baseline tools rely
on the coverage profile of the failing test cases, Flex augments such tools with counterfactual
executions, providing a way to break ties by reducing the number of statements with the same score
as the faulty statement. In the case of grep, the vanilla version of Ochiai suffers from ties of 2,000
statements. On the other hand, Flex effectively breaks the ties and improves the ranking by 1,300.
This result demonstrates that our counterfactual analysis significantly enhances the performance
of fault localization when many statements are tied in the ranking. Furthermore, Flex consistently
improves the ranking quality in function-level fault localization for all 65 cases. Table 5 also shows
the results in the function-level ranking. For all the target faults, Flex outperforms the baselines by
28%, 28%, and 28% improvements on the ranking of the faulty function.

5.2.2 Java Benchmarks. This section evaluates the effectiveness of Flex compared to the baselines
on the Java benchmarks. While our primary goal is to improve the accuracy of fault localization
with external oracles, Flex is still effective when internal oracles are available.

For Java benchmarks, Flex can employ a more precise approximated oracle for failing test cases
by further utilizing error logs from JVM. Instead of just comparing the call sequences as in C, Flex
checks the exception type and, the call and return site of each method call on the call stack at the

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 2, Article 35. Publication date: January 2025.

Improving Fault Localization with External Oracle 35:13

Table 6. Performance of Baseline Tools and Flex on the Java Benchmarks

Ochiai Tarantula Dstar

Program Vanilla Flex Improv. Vanilla Flex Improv. Vanilla Flex Improv.

Lang 1,947 1,909 2% 1,985 1,949 2% 1,947 1,909 2%
Math 10,880 10,188 6% 11,023 10,305 7% 10,923 10,244 6%
Chart 3,901 3,867 1% 4,121 4,081 1% 3,856 3,835 1%
Time 2,024 1,722 15% 2,103 1,814 14% 2,034 1,732 15%
Closure 71,350 57,510 19% 73,202 58,621 20% 71,861 57,842 20%
Mockito 2,996 2,860 5% 2,996 2,860 5% 2,996 2,860 5%

Total 93,098 78,056 16% 95,430 79,630 17% 93,617 78,422 16%

Each baseline is augmented with Flex, and is compared to the original version, denoted as Vanilla. Both
columns report the total number of statements that must be examined to locate all the faults in the project.
Improv. reports the improvement ratio of Flex over the vanilla version of the baselines. We report the rank of
the faulty statement as the last among its ties.

failure point. This oracle is more effective for Java programs because of the different coding styles
between C and Java programs. Each method in Java is usually short and involves more method
calls compared to C programs. As a result, a condition change in a variant program has a higher
chance of introducing a different call sequence even though the failing behavior is preserved in the
variant. To avoid this noise, we utilize the exception type (e.g., NullPointerException) and call stack
of each failure.

To show the effectiveness, we also applied Flex to SmartFL [29], which is a state-of-the-art fault
localization technique that utilizes internal oracles. In this experiment, we report the number of
statements that must be examined to locate all the faults in the project.

We integrated Flex with SmartFL in a slightly different way from the other techniques. Since
the others utilize coverage profile, Flex can directly compute the suspiciousness scores from the
collaborative coverage. However, SmartFL does not utilize coverage profile but is based on a
probabilistic model. Thus, we first compute suspiciousness scores using SmartFL and filter out the
statements whose failing coverage count is 0 in our collaborative coverage profile.

Tables 6 and 7 show the experimental results. In total, Flex improves the performance of
the vanilla Ochiai, Tarantula, Dstar, and SmartFL by 16%, 17%, 16%, and 22%. Note that Flex
significantly improves the accuracy for Closure compared to the other benchmarks. This is because
of the highly complex nature of the project. Most of the unit tests in the other projects are designed
to check the correctness of individual functions. Therefore, they simply compare the return values
of target functions to their reference outputs. However, the test cases for Closure mainly check
the correctness of the whole program. Thus, a single test executes a large number of statements
and assertion checks as in the C cases. Moreover, since Closure is a compiler, the test cases involve
complex custom checkings for the internal states of the compiler (e.g., parsing error). In such cases,
Flex can effectively improve the accuracy of fault localization compared to other techniques.

Notice that SmartFL failed to run for Closure and Mockito in our experiment. SmartFL is based
on the dependency of the return values from the target functions under test. We conjecture the
complex nature of the test cases makes it difficult for SmartFL to derive accurate dependencies
between the test outcomes and program statements.

There exist few cases where Flex failed to improve the accuracy of fault localization against
the baselines. This mainly happens when the failing test cases are not well-designed. For example,
a failing test case for Chart aims to check whether the program handles the null value properly.
However, the test case checks for any exception and simply reports that an exception has occurred.

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 2, Article 35. Publication date: January 2025.

35:14 J. Park et al.

Table 7. Performance of SmartFL and
Flex on the Java Benchmarks

SmartFL

Program Vanilla Flex Improv.

Lang 304 261 14%
Math 1,685 1,621 4%
Chart 153 148 3%
Time 2,124 1,303 39%
Closure - - -
Mockito - - -

Total 4,266 3,333 22%

SmartFL is augmented with Flex, and is
compared to the original version, denoted
as Vanilla. Both columns report the total
number of statements that must be exam-
ined to locate all the faults in the project. Im-
prov. reports the improvement ratio of Flex
over the vanilla version of the baselines. We
report the rank of the faulty statement as the
last among its ties. Note that the results of
SmartFL are not available for Closure and
Mockito because SmartFL failed to run on
these projects.

Since the test case does not provide any information about the captured exception, Flex cannot
distinguish different failing behaviors. In such cases, Flex may falsely determine that the failing
behavior is preserved in the variant, thus ending up filtering out the faulty statements.

Overall, the result demonstrates that Flex is also effective when internal oracles are available.
Even though existing techniques can improve the accuracy by exploiting internal oracles, it is often
difficult to analyze the complex behavior of the program under test. Instead, Flex can be easily
integrated with existing techniques to further improve the accuracy of fault localization.

Answer to RQ1. Flex significantly improves the ranking quality of SBFL techniques by 24%,
23%, and 24% on average over each baseline, respectively, for Ochiai, Tarantula, and Dstar.
Flex is also effective when internal oracle is available, improving the performance of the
vanilla Ochiai and SmartFL by 16% and 22% on average. Flex is easily integrated with
existing techniques with the ability to filter out the irrelevant statements.

5.3 Impact of Approximated Oracles
In this section, we perform an analysis of the overall impact of the approximated oracles. Recall
from Section 3.2 that Flex uses the approximated oracles for Ppass and Pfail to examine whether
the program behavior is preserved in the program variant. We investigate the impact of different
approximated oracles for Ppass and Pfail in the following sections.

5.3.1 Approximated Oracle for Ppass . Flex uses the approximated oracle for Ppass to examine
whether the behavior of the passing test cases is still preserved in the program variant. In our main
experiment, we set the threshold of preserved passing test cases to 90%. In order to analyze the
impact of this threshold, we perform an experiment with a different threshold. We instantiated a

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 2, Article 35. Publication date: January 2025.

Improving Fault Localization with External Oracle 35:15

Table 8. Comparative Analysis of Flex’s Approximated Oracle for Ppass

Vanilla Flex Flex%80 Flex%100
Project # Stmts # Stmts Improv. # Stmts Improv. # Stmts Improv.

gzip 2,233 1,881 16% 1,892 15% 1,881 16%
libtiff 5,914 4,827 18% 4,856 18% 4,942 16%
php 1,396 1,135 19% 1,143 18% 1,172 16%
make 430 292 32% 292 32% 345 20%
grep 1,819 846 53% 846 53% 842 54%

Total 11,792 8,981 24% 9,029 23% 9,182 22%

Selected Var. 2,273 2,630 670

Vanilla represents the vanilla Ochiai. Flex, Flex%100, and Flex%80 represent Flex with the threshold set to
90%, 100%, and 80%, respectively. The column # Stmts is the total number of statements that must be examined
to locate all the faulty statements in the project. The column Improv. is the reduction ratio of the number of
statements to be examined. We also report the total number of selected variants in Ppass using the threshold in
the row Selected Var.

variant of Flex with a tighter threshold, Flex%100 with the threshold of 100%, and compared the
performance with Flex and vanilla Ochiai. Table 8 shows the results of the experiment.

Flex%100 improves the performance of vanilla Ochiai by 22% and Flex%80 improves it by 23%,
which are relatively small improvements compared to Flex. This is because the choice of threshold
affects the number of selected variants, hence the accuracy of fault localization. If a threshold is high,
Flex may not be able to select enough variants, thus resulting in a less performance improvement.
When the threshold is 100%, Flex only selected 670 passing variants. This in turn introduces less
chance to filter out statements that are irrelevant to the faults. On the other hand, if a threshold is
low, Flex may contain unwanted program variants which the behavior of passing test cases are not
preserved, thus resulting in a less performance improvement. Nevertheless, Flex%100 and Flex%80
still improve the performance by 22% and 23%. Thus, the overall performance of Flex with different
thresholds shows consistent improvement.

5.3.2 Approximated Oracle for Pfail . Flex uses the approximated oracle for Pfail to examine
whether the behavior of the failing test cases is still preserved in the program variant. In our main
experiment, we selected the program variants that resulted in the exact same call sequence of the
failing test case as the original version. In other words, we set the threshold of the preserved call
sequence to 100%. In order to investigate the impact of this threshold, we instantiated Flex�90 with
a threshold of 90% and compared the performance with Flex and vanilla Ochiai.

Table 9 shows the results of the experiment. With Flex�90, the number of selected variants
increases, but the performance of fault localization decreases. This is because we take an aggressive
approach when utilizing the variants in Pfail . So unlike Ppass , if we use variants that diverge slightly
from the original failing test case, the side effects of such variants can be more severe. In summary,
preserving the exact call sequence of the failing test case performs the best.

Answer to RQ2. The choice of different approximated oracle impacts the performance of
Flex. In our empirical study, we found that 90% threshold for Ppass and exact call sequence
for Pfail performs the best.

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 2, Article 35. Publication date: January 2025.

35:16 J. Park et al.

Table 9. Comparative Analysis of Flex’s Approximated Oracle for Pfail

Vanilla Flex Flex�90
Project # Stmts # Stmts Improv. # Stmts Improv.

gzip 2,233 1,881 16% 1,455 35%
libtiff 5,914 4,827 18% 13,411 −127%
php 1,396 1,135 19% 2,419,416 −173,211%
make 430 292 32% 39,457 −9,076%
grep 1,819 846 53% 17,101 −840%

Total 11,792 8,981 24% 2,480,604 −20,936%

Selected Var. 46,966 65,393

Flex and Flex� 90 represent Flex with the threshold set to 100% and 90%, respectively.
Note that the row Selected Var. now reports on the total number of selected variants
in Pfail . The rest of the notations are the same as in Table 8.

Table 10. Comparative Analysis of Flex’s Aggregation Schemes

Vanilla Flex Flex%<0G Flex�0E6
Project # Stmts # Stmts Improv. # Stmts Improv. # Stmts Improv.

gzip 2,233 1,881 16% 1,886 16% 2,067 7%
libtiff 5,914 4,827 18% 4,837 18% 5,364 9%
php 1,396 1,135 19% 1,134 19% 1,162 17%
make 430 292 32% 1,886 −339% 348 19%
grep 1,819 846 53% 2,091 −15% 929 49%

Total 11,792 8,981 24% 11,834 0% 9,870 16%

Flex%<0G and Flex�0E6 each represent the variant of Flex with the aggregation scheme of passing
coverage set to maximum and failing coverage set to average, respectively. The rest of the notations
are the same as in Table 8.

5.4 Impact of Aggregation Scheme for the Collaborative Coverage
In this section, we analyze the impact of the aggregation scheme for collaborative coverage. Note
that Flex uses the average of the passing coverage from the program variants in Ppass , and the
minimum of the failing coverage from the program variants in Pfail and the original version to
obtain the collaborative coverage.

We perform an experiment with different aggregation schemes to analyze their impact. We
instantiated Flex with the following alternative aggregation schemes: maximum for the passing
coverage and average for the failing coverage. The variants of Flex with alternative aggregation
schemes are denoted as Flex%<0G

and Flex�0E6 , respectively. Note that we have set the aggregation
scheme for passing coverage to average and failing coverage to minimum when altering the
aggregation scheme for the other. Table 10 shows the results of the experiment.

The results are consistent with the insight we elaborated in Section 3.3. For the passing coverage,
the average aggregation scheme is more effective and for the failing coverage, the minimum
aggregation scheme is more effective. The maximum aggregation scheme for passing coverage is
less effective because some variants may have high passing coverage for faulty statements. Thus

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 2, Article 35. Publication date: January 2025.

Improving Fault Localization with External Oracle 35:17

Table 11. Impact of Variants from Ppass and Pfail on the Effectiveness of Flex

Vanilla Flex Flex?0BB Flex5 08;

Project # Stmts # Stmts Improv. # Stmts Improv. # Stmts Improv.

gzip 2,233 1,881 16% 2,170 3% 1,874 16%
libtiff 5,914 4,827 18% 5,179 12% 4,936 17%
php 1,396 1,135 19% 1,307 6% 1,172 16%
make 430 292 32% 363 16% 345 20%
grep 1,819 846 53% 970 47% 1,521 16%

Total 11,792 8,981 24% 9,989 15% 9,848 16%

Selected Var. 49,085 2,119 46,966

Flex?0BB and Flex5 08; represent Flex utilizing only the variants from Ppass and Pfail , respectively. Note that
the row Selected Var. now reports the number of selected variants in Ppass ∪ Pfail . The rest of the notations
are the same as in Table 8.

taking such an aggressive aggregation scheme results in the degradation of the faulty statement’s
rank. The average aggregation schemes for failing coverage are less effective than the minimum
aggregation scheme because they do not effectively utilize the information from the program
variants in Pfail . Thus, we lose the chance to filter out more of the irrelevant statements that are
ranked higher than, or tied with the faulty statement.

In summary, our insight is validated by the experiment. It is better to take a conservative approach
when aggregating information from the program variants in Ppass , and aggressive approach when
aggregating information from the program variants in Pfail .

Answer to RQ3. Consistent with our insight, the average aggregation scheme for passing
coverage and the minimum aggregation scheme for failing coverage are more effective.

5.5 Impact of Variants from Ppass and Pfail
In this section, we analyze the impact of the variants from Ppass and Pfail . In order to identify their
impact separately, we have instantiated Flex?0BB and Flex5 08; to compare the performance with
Flex and vanilla Ochiai. Flex?0BB is an instantiation of Flex which utilizes only the variants from
Ppass , and Flex5 08; is an instantiation of Flex which utilizes only the variants from Pfail . Table 11
shows the results of the experiment.

The results show that both Flex?0BB and Flex5 08; outperform the vanilla Ochiai by 15% and 16%,
respectively. This is because the use of variants from Ppass and Pfail both play an effective role in
filtering out the irrelevant statements. Moreover, Flex outperforms both Flex?0BB and Flex5 08; ,
demonstrating that the variants from Ppass and Pfail are complementary to each other.

Answer to RQ4. The variants from Ppass and Pfail both contribute to the overall performance
of Flex, complementary to each other.

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 2, Article 35. Publication date: January 2025.

35:18 J. Park et al.

Table 12. Overhead of Flex

Program)?)5 %A435 %A43?5 $.� .

gzip 6 1 181 3 29×
libtiff 59 2 247 30 39×
php 7,715 1 1,255 3 3×
make 108 1 401 153 155×
grep 32 1 181 60 64×

)? and)5 denote the average number of passing and failing
tests, respectively. %A435 denotes the average number of
predicates covered by the failing tests. %A43?5 denotes the
average number of predicates covered by both the passing
and failing tests.$.� . denotes the overhead of Flex.

6 Discussion
6.1 Overhead
In this section, we discuss the overhead of Flex. Since Flex is also based on the spectrum of
given test cases, it is basically expected to have comparable running cost as the traditional SBFL
techniques.

The necessary time cost can be estimated as follows.The dominant cost of Flex and the traditional
SBFL techniques is the execution time of the test cases given by the program. Let) be the number
of test cases. The necessary number of program executions by the traditional techniques is equal
to) . Let)? and)5 be the passing and failing test cases, respectively. Also, let %A435 and %A43?5
be the number of predicates covered by the failing test cases and both the passing and failing test
cases, respectively. Then, the required number of executions by Flex is the sum of the following:

—# executions of the original program to collect the coverage information:) .
—# executions to select the variants for Pfail :)5 × %A435 .
—# executions to select the variants for Ppass :)? × %A43?5 .

In summary, Flex additionally executes the program times more than the traditional approaches
where =)5 × %A435 +)? × %A43?5 . Then, the overhead of Flex (denoted as $.� . in Table 12), as
a constant factor multiplied by the cost of the traditional SBFL techniques, is calculated as)+

)
.

Our experimental results demonstrate that Flex has a reasonable overhead. Table 12 shows the
actual number of test cases and predicates. Note that)5 is mostly 1, and %A43?5 is much smaller
than %A435 , approximately 10% on average.

For the projects with a large number of test cases, such as php, the overhead of Flex is only 3×
compared to the traditional SBFL techniques. For the other projects with bigger overheads, the
number of test cases is much smaller, thus still scalable. Furthermore, all the executions of the
program variants can be fully parallelized. Overall, we believe that this is a reasonable overhead
compared to other fault localization techniques such as mutation-based fault localization
(MBFL).

6.2 Threats to Validity
6.2.1 Threats to External Validity: Generality. The choice of benchmarks used in our study can

have an impact on the generalizability of our results. We used real-world open source programs
written in C and Java from widely used benchmarks. However, our findings might not apply to

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 2, Article 35. Publication date: January 2025.

Improving Fault Localization with External Oracle 35:19

other programs with different characteristics, such as close-sourced software systems or programs
written in different programming languages.

The approach of Flex designs to target general programs for improved fault localization. However,
it may not be effective for programs that have few branches. Also, obfuscated programs which can
have meaningless branches can hinder Flex from working properly.

6.2.2 Threats to Internal Validity: Sensitivity. The performance of Flex is dependent on the choice
of parameters, such as the preserving ratio used in the criteria of variant selection mentioned in
Section 3.2. While we used reasonable parameters based on our insight in our experiments, there
may be other parameter combinations that could improve the performance of our approach.

Flex adopts the minimum and average value policy to integrate the execution profile from
program variants selected by approximated oracles. However, other methods can be applied to
them, and it may affect the performance of Flex.

6.2.3 Threats to Construct Validity. Our tool assumes that a target program contains predicates
and it can be tested by passing and failing test suites, so that it is able to generate program variants. In
addition, this study makes use of counterfactual assumptions, which anticipate the target program’s
behavior changes when negating its predicates and running the test suites.

7 Related Work
Our work is applicable to a wide range of fault localization techniques that are based on the
spectrum of given test cases [1, 8, 9, 24]. Recently, researchers have proposed several techniques
to improve the accuracy of SBFL techniques by combining various techniques including dynamic
analysis or probabilistic models [13, 23, 29, 31]. However, they rely on internal test oracles in the
form of assertions or unit tests. Therefore, these techniques are not directly applicable for fault
localization without internal oracles. Furthermore, we observed that it is still challenging to achieve
accurate fault localization for large and complex programs even with internal oracles. Flex tackles
this problem to improve by using counterfactual execution and approximated oracle.

The line of work in MBFL has commonality with Flex in that they change the program to observe
the behavioral difference. MBFL is another fault localization approach based on the insight that
there is more chance for a program to pass the failing test when the faulty statement is mutated
[16, 18, 30]. Therefore, they iteratively and randomly mutate program locations and observe the
behavior. While this technique is accurate, it is also well known to be heavily expensive [33]. In
contrast, Flex generates variant programs by setting a branch condition executed by the failing
test case to a constant Boolean value. This is different from the mutation operators used in MBFL
techniques due to the following reasons: (1) Each variant is not randomly generated but is dedicated
to a specific purpose, which is to force the execution flow to a desired path. Thus, Flex generates
much fewer variants than MBFL and every information from the variant is used to adjust the
suspiciousness score of SBFL. (2) There is no randomness in the generation of the variant program.
The Boolean constant is decided by the branch condition during the failing execution. In line with
this point, we have intentionally used the term variants instead of mutants to emphasize that the
program is not randomly mutated but modified to force the execution flow to a specific path.

Value-based fault localization techniques iteratively execute failing runs with changed values or
use learning methods to predict the faulty locations [4, 7, 12, 21, 25]. For example, Unival [12] learns
from the concrete execution traces to estimate the impact of each variable to the passing and failing
behavior, thus identifying the most suspicious variable. Flex also iteratively executes the program
with changed predicate values. However, Flex rather focuses on the direct and concrete impact of
changed predicates values to the program behavior (i.e., control flow and execution results).

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 2, Article 35. Publication date: January 2025.

35:20 J. Park et al.

Recently, researchers have proposed several learning-based techniques to combine information
from multiple sources including different SBFL techniques, source code metrics, and text similarity
[14, 22, 28, 33]. Flex is orthogonal to these approaches because it can be used as a component in
these learning-based approaches to improve their performance. Thus, the improvement of both
sides will be beneficial to the community.

There are several fault localization techniques that manipulate predicates to improve the accuracy
of fault localization [27, 32]. Zhang et al. [32] were the first to apply predicate switching to locating
faults. However, they target a specific class of faults where the failing test cases pass when a certain
predicate is flipped. On the other hand, Flex is generally applicable to any fault because we utilize
predicates to identify non-relevant statement with counterfactual execution and approximated
oracles.

Flip [27] also inverts the predicate condition and observe the behavior to improve the accuracy
of SBFL. After flipping a predicate, Flip first checks whether the failing behavior is removed or not.
If so, the predicate is considered as a critical predicate with respect to the fault. Then, Flip increases
the suspiciousness score of the statements on which the predicate is data dependent. Otherwise,
Flip decreases the suspiciousness score of the dependent statements.

Unfortunately, Flip is not publicly available, so, we could not directly compare Flex to Flip.
However, we believe that Flex will be more effective than Flip in most cases for the following
reasons: (1) Flex targets a wider range of predicates, specifically all predicates executed by the failing
test case. In contrast, Flip focuses on critical predicates, which can change the failing behavior
when flipped. However, we observed that such critical predicates are scarce in our benchmark.
For example, among the 64 faults in Lang project, only two cases have critical predicates, 1 and 6,
respectively. Thus, Flip may not be effective in these cases. (2) Flex can adjust the scores of more
statements than Flip. While Flip adjusts the suspiciousness scores of statements dependent on
critical predicates, Flex adjusts the scores of all statements executed with counterfactual execution.
Nonetheless, the Flex and Flip are complementary to each other because Flex augments the
coverage profile of the statements with the counterfactual execution, while Flip directly adjusts
the suspiciousness scores of statements to improve the accuracy of fault localization. In summary,
Flex and Flip are complementary to each other and can be used together to improve the accuracy
of fault localization.

8 Conclusion
In this article, we presented a new approach for SBFL with external oracles. While there has been a
large body of research for improving the accuracy of SBFL, they require precise internal oracles.
In contrast, our approach suppresses program components that are unrelated to faults by using
counterfactual executions and approximated oracles. We evaluated our approach on a large number
of real faults from widely used open source projects. The results show that our approach can
significantly improve the accuracy of SBFL with external oracles.

Data Availability Statement
We make all the detailed data and replication packages publicly available at https://github.com/
prosyslab/flex-artifact.

References
[1] Rui Abreu, Peter Zoeteweij, and Arjan J. C. van Gemund. 2006. An evaluation of similarity coefficients for software

fault localization. In Proceedings of the 12th IEEE Pacific Rim International Symposium on Dependable Computing
(PRDC ’06) , 39–46.

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 2, Article 35. Publication date: January 2025.

https://github.com/prosyslab/flex-artifact
https://github.com/prosyslab/flex-artifact

Improving Fault Localization with External Oracle 35:21

[2] Marcel Böhme and Abhik Roychoudhury. 2014. CoREBench: Studying complexity of regression errors. In Proceedings
of the International Symposium on Software Testing and Analysis (ISSTA ’14), 105–115.

[3] Thierry Titcheu Chekam, Mike Papadakis, and Yves Le Traon. 2016. Assessing and comparing mutation-based fault
localization techniques. arXiv:1607.05512v1. Retrieved from https://doi.org/10.48550/arXiv.1607.05512

[4] Ross Gore, Paul F. Reynolds Jr., and David Kamensky. 2011. Statistical debugging with elastic predicates. In Proceedings
of the 26th IEEE/ACM International Conference on Automated Software Engineering (ASE ’11), 492–495.

[5] Claire Le Goues, Neal J. Holtschulte, Edward K. Smith, Yuriy Brun, Premkumar T. Devanbu, Stephanie Forrest,
and Westley Weimer. 2015. The ManyBugs and IntroClass benchmarks for automated repair of C programs. IEEE
Transactions on Software Engineering (TSE) 41, 12 (2015), 1236–1256.

[6] Jong-In Jang, Duksan Ryu, and Jongmoon Baik. 2022. HOTFUZ: Cost-effective higher-order mutation-based fault
localization. Software Testing, Verification and Reliability 32, 8 (2022), e1802.

[7] Dennis Jeffrey, Neelam Gupta, and Rajiv Gupta. 2009. Effective and efficient localization of multiple faults using value
replacement. In Proceedings of the 25th IEEE International Conference on Software Maintenance (ICSM ’09).

[8] James A. Jones and Mary Jean Harrold. 2005. Empirical evaluation of the tarantula automatic fault-localization
technique. In Proceedings of the IEEE/ACM International Conference on Automated Software Engineering (ASE ’05).

[9] James A. Jones, Mary Jean Harrold, and John T. Stasko. 2002. Visualization of test information to assist fault localization.
In Proceedings of the International Conference on Software Engineering (ICSE ’02).

[10] René Just, Darioush Jalali, and Michael D. Ernst. 2014. Defects4J: A database of existing faults to enable controlled
testing studies for Java programs. In Proceedings of the International Symposium on Software Testing and Analysis
(ISSTA ’14), 437–440.

[11] Yunho Kim, Seokhyeon Mun, Shin Yoo, and Moonzoo Kim. 2019. Precise learn-to-rank fault localization using dynamic
and static features of target programs. ACM Transactions on Software Engineering and Methodology (TOSEM) 28, 4
(2019), 23:1–23:34.

[12] Yigit Küçük, Tim A. D. Henderson, and Andy Podgurski. 2021. Improving fault localization by integrating value and
predicate based causal inference techniques. In Proceedings of the 43rd IEEE/ACM International Conference on Software
Engineering (ICSE ’21), 649–660.

[13] Xia Li, Wei Li, Yuqun Zhang, and Lingming Zhang. 2019. DeepFL: Integrating multiple fault diagnosis dimensions for
deep fault localization. In Proceedings of the ACM SIGSOFT International Symposium on Software Testing and Analysis
(ISSTA ’19).

[14] Xia Li and Lingming Zhang. 2017. Transforming programs and tests in tandem for fault localization. Proceedings of
the ACM on Programming Languages 1, OOPSLA (2017), 1–30.

[15] Yi Li, Shaohua Wang, and Tien N. Nguyen. 2021. Fault localization with code coverage representation learning. In
Proceedings of the 43rd IEEE/ACM International Conference on Software Engineering (ICSE ’21), 661–673.

[16] Seokhyeon Moon, Yunho Kim, Moonzoo Kim, and Shin Yoo. 2014. Ask the mutants: Mutating faulty programs for
fault localization. In Proceedings of the IEEE International Conference on Software Testing, Verification and Validation
(ICST ’14), 153–162.

[17] George C. Necula, Scott McPeak, Shree Prakash Rahul, and Westley Weimer. 2002. CIL: Intermediate language and
tools for analysis and transformation of C programs. In Proceedings of the Compiler Construction, 11th International
Conference, CC 2002, Held as Part of the Joint European Conferences on Theory and Practice of Software (ETAPS ’02). R.
Nigel Horspool (Ed.), Vol. 2304. Springer, 213–228.

[18] Mike Papadakis and Yves Le Traon. 2015. Metallaxis-FL: Mutation-based fault localization. Software Testing, Verification
and Reliability (STVR) 25 (2015), 605–628.

[19] Renaud Pawlak, Martin Monperrus, Nicolas Petitprez, Carlos Noguera, and Lionel Seinturier. 2016. SPOON: A library
for implementing analyses and transformations of java source code. Software: Practice and Experience 46, 9 (2016),
1155–1179.

[20] Spencer Pearson, José Campos, René Just, Gordon Fraser, Rui Abreu, Michael D. Ernst, Deric Pang, and Benjamin
Keller. 2017. Evaluating and improving fault localization. In Proceedings of the 39th International Conference on Software
Engineering (ICSE ’17). IEEE / ACM, 609–620.

[21] Andy Podgurski and Yigit Küçük. 2020. CounterFault: Value-based fault localization by modeling and predicting
counterfactual outcomes. In Proceedings of the IEEE International Conference on Software Maintenance and Evolution
(ICSME ’20), 382–393.

[22] Jeongju Sohn and Shin Yoo. 2017. FLUCCS: Using code and change metrics to improve fault localization. In Proceedings
of the ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA ’17).

[23] Ezekiel O. Soremekun, Lukas Kirschner, Marcel Böhme, and Andreas Zeller. 2021. Locating faults with program slicing:
An empirical analysis. Empirical Software Engineering 26, 3 (2021), 51.

[24] W. Eric Wong, Vidroha Debroy, Ruizhi Gao, and Yihao Li. 2014. The DStar method for effective software fault
localization. IEEE Transactions on Reliability (TRel) (2014).

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 2, Article 35. Publication date: January 2025.

https://doi.org/10.48550/arXiv.1607.05512

35:22 J. Park et al.

[25] Tao Xie and David Notkin. 2005. Checking inside the black box: Regression testing by comparing value spectra. IEEE
Transactions on Software Engineering (TSE) 31, 10 (2005), 869–883.

[26] Xiaofeng Xu, Vidroha Debroy, W. Eric Wong, and Donghui Guo. 2011. Ties within fault localization rankings: Exposing
and addressing the problem. International Journal of Software Engineering and Knowledge Engineering (IJSEKE) 21, 6
(2011), 803–827.

[27] Xuezheng Xu, Changwei Zou, and Jingling Xue. 2020. Every mutation should be rewarded: Boosting fault localization
with mutated predicates. In Proceedings of the IEEE International Conference on Software Maintenance and Evolution
(ICSME ’20), 196–207.

[28] Jifeng Xuan and Martin Monperrus. 2014. Learning to combine multiple ranking metrics for fault localization. In
Proceedings of the 30th IEEE International Conference on Software Maintenance and Evolution (ICSME ’14), 196–207.

[29] Muhan Zeng, Yiqian Wu, Zhentao Ye, Yingfei Xiong, Xin Zhang, and Lu Zhang. 2022. Fault localization via efficient
probabilistic modeling of program semantics. In Proceedings of the 44th International Conference on Software Engineering
(ICSE ’22), 958–969.

[30] Lingming Zhang, Lu Zhang, and Sarfraz Khurshid. 2013. Injecting mechanical faults to localize developer faults
for evolving software. In Proceedings of the ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA ’13), 765–784.

[31] Mengshi Zhang, Yaoxian Li, Xia Li, Lingchao Chen, Yuqun Zhang, Lingming Zhang, and Sarfraz Khurshid. 2021. An
empirical study of boosting spectrum-based fault localization via PageRank. IEEE Transactions on Software Engineering
47, 6 (2021), 1089–1113.

[32] Xiangyu Zhang, Neelam Gupta, and Rajiv Gupta. 2006. Locating faults through automated predicate switching. In
Proceedings of the International Conference on Software Engineering (ICSE ’06), 272–281.

[33] Daming Zou, Jingjing Liang, Yingfei Xiong, Michael D. Ernst, and Lu Zhang. 2021. An empirical study of fault
localization families and their combinations. IEEE Transactions on Software Engineering (TSE) 47, 2 (2021), 332–347.

Received 8 February 2024; revised 11 June 2024; accepted 10 August 2024

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 2, Article 35. Publication date: January 2025.

	Abstract
	1 Introduction
	2 Motivation
	2.1 Motivating Example
	2.2 Background: SBFL
	2.3 Challenges: External Oracles

	3 Approach
	3.1 Program Variant Generation for Counterfactual Execution
	3.2 Program Variant Selection Using Approximated Oracles
	3.3 Collaborative Coverage Collection

	4 The Flex Framework
	5 Evaluation
	5.1 Setting
	5.2 Effectiveness of Flex
	5.3 Impact of Approximated Oracles
	5.4 Impact of Aggregation Scheme for the Collaborative Coverage
	5.5 Impact of Variants from Ppass and Pfail

	6 Discussion
	6.1 Overhead
	6.2 Threats to Validity

	7 Related Work
	8 Conclusion
	References

