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Proper naming of methods can make program code easier to understand, and thus enhance software maintainability. Yet,
developers may use inconsistent names due to poor communication or a lack of familiarity with conventions within the
software development lifecycle. To address this issue, much research effort has been invested into building automatic tools
that can check for method name inconsistency and recommend consistent names. However, existing datasets generally do
not provide precise details about why a method name was deemed improper and required to be changed. Such information
can give useful hints on how to improve the recommendation of adequate method names. Accordingly, we construct a
sample method-naming benchmark, ReName4J, by matching name changes with code reviews. We then present an empirical
study on how state-of-the-art techniques perform in detecting or recommending consistent and inconsistent method names
based on ReName4J. The main purpose of the study is to reveal a different perspective based on reviewed names rather than
proposing a complete benchmark. We find that the existing techniques underperform on our review-driven benchmark,
both in inconsistent checking and the recommendation. We further identify potential biases in the evaluation of existing
techniques, which future research should consider thoroughly.
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“There are only two hard things in Computer Science: cache invalidation and naming things.” —- Philip Lewis
Karlton [28]
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1 INTRODUCTION
A method is the smallest unit of program behavior in a software project [24, 52]. Accordingly, choosing

method names that are consistent with the conventions of the software project and the behavior of the method
body is crucial for software maintenance [8, 18], comprehension [23, 30, 46, 49], and reuse [7, 12, 13, 36].
Nevertheless, software developers are not always successful in choosing appropriate method names. Figure 1
shows a few examples from open-source projects. In Figure 1a, the method name register suggests that
the method stores some data in an internal container while the method actually creates a new object and
returns it. Thus, the corresponding code review suggests generateToken instead. In Figure 1b, the method name
transitToRestoreActive suggests that the method changes a program state selectively, while actually, the
method is executed all the time. The corresponding review recommends enforceRestoreActive.

public String register(DirectoryBrowserSupport dbs , StaplerRequest req) {
...
String value = authenticationName + ":" + date.getTime () + ":" + completeUrl;
try {

return encode(value);
} catch (Exception ex) {

LOGGER.log(Level.WARNING , "Failed to encode " + value , ex);
}
return null;

}

register should be renamed to be consistent with the current approach (was more meaningful when it was stateful). Proposal: generate-
Token.

(a) A method from Jenkins project and its corresponding review comment.1

public void transitToRestoreActive () {
if (state != ChangelogReaderState.ACTIVE_RESTORING) {

...
pauseChangelogsFromRestoreConsumer(standbyRestoringChangelogs ());

}
state = ChangelogReaderState.ACTIVE_RESTORING;

}

Renamed this method to make it clear we aren’t necessarily “transitioning”, we actually call it all the time now any time we want to “be
in restoreActive”.

(b) A method from Kafka project and its corresponding review comment.2

Fig. 1. Code review examples related to method naming.

To alleviate the problem of inconsistent method names, many researchers have proposed techniques [2,
33, 35, 38, 42] to automate two tasks: (1) method name consistency checking (MCC) and (2) method name
recommendation (MNR). A challenge, however, is how to evaluate such approaches in a meaningful way. For
example, the dataset of Liu et al. [38] comes from revisions that only change method names. While creating a
revision that only changes method names does suggest that the method names were unsuitable, such a revision
does not provide clear evidence of whether the change reflects the conventions of a community or the opinion of
a single developer. Datasets furthermore have been balanced, to meet the needs of learning methods and report
results on the recognizability of specific classes. But in practice, method names tend to stabilize over time, and
thus most methods in a well-maintained software project already have consistent names, so a technique scanning
for naming problems has to be able to cope with imbalanced inputs. Finally, techniques often rely on similarity
thresholds that have been optimized for specific datasets. These issues indicate that there may be a gap between
the research results and reality.
1https://github.com/jenkinsci/jenkins/pull/4239/files/41919ee7829223062d5d5ca4d592fd8056e55017#r330954855
2https://github.com/apache/kafka/pull/8319/files/c7ac051e495a98b6c72a340c24f4b9bb1f25dcdd#r395348873
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Code review data can provide insight to address the above method naming challenges. Alsuhaibani et al. [6]
found that method names are discussed during code review and that developers change method names in response
to comments from reviewers. Such discussions raise an opportunity to sample method-renaming pairs, in which
method name changes are supported by discussions among maintainers of the affected code base, and to use
this database to assess MCC and MNR techniques. For our benchmark, ReName4J, we first collect the reviews
from pull requests in GitHub [19]. We leverage naming-related terms (e.g., “naming”, “name”, “inconsistent”,
and “descriptive”) to identify relevant reviews, and collect the corresponding patches, including the actual code
files as well as the metadata (e.g., file hashes, paths, pull request status, and commit information). To extract the
method names, we parse all the collected patches and files, then we map the extracted names to the reviews. We
include 400 sample pairs of method names (i.e., buggy and fixed), method bodies, and the corresponding reviews.

Based on ReName4J, this paper investigates existing MCC and MNR techniques and asks the following research
questions:

• RQ1: Can the existing MCC/MNR tools retrieve the appropriate names for the methods that are considered
in code review scenarios?

• RQ2: Do the existing MCC/MNR tools achieve an acceptable detection rate for consistent method names
as well as for those of inconsistent method names?

• RQ3: What happens when we test the MCC/MNR tools on an imbalanced test dataset reflecting the
properties of real world software projects instead of a balanced test dataset that is artificially selected?

Answering these questions helps fill the gaps between the research and practice by providing three insights.
First, the effectiveness of existing techniques for measuring MCC/MNR relies on the validity of the potential
ground truth. Second, it is important to consider how current tools fare in both identifying inconsistencies
and verifying consistency. Third, the impact of the balance or imbalance of test sets on performance should
also be considered. We believe that these research questions could capture the attention of researchers who
are interested in software refactoring specifically, method name recommendation and consistency checking.
Moreover, researchers and practitioners can better comprehend various perspectives and evaluate the relevant
tools.

To address these questions, we present an empirical study of how state-of-the-art techniques detect/recommend
the names for test oracles from our benchmark.The study involves three recent techniques, Spot [38], Cognac [52],
and GTNM [37], for MCC/MNR tasks. The study’s results showcase that existing techniques are less effective at
recommending suitable method names for the newly developed benchmark, which is based on code review data,
compared to those used in previous studies. This indicates code review comments may provide insights for better
name recommendations, such as exploiting context information available in other methods of the same classes
or modules. For detecting inconsistent names, the target techniques perform similarly to random classification,
often misclassifying consistent names as inconsistent due to the nuanced nature of human-reviewed names,
which demands deeper code context understanding. Differences in method name complexity and length between
our benchmark and existing datasets may also challenge models trained on simpler examples. Insights from
ReName4J suggest that incorporating more method body information could improve classification performance.
Finally, the imbalanced dataset, which reflects real-world conditions, may expose issues such as overly strict
threshold values for classifying inconsistent names.

Our key findings are as follows:

• The method names in existing datasets lack validation because the consistency of methods has not been
thoroughly verified through reviews. In contrast, our benchmark includes method names that have been
rigorously checked and accepted by project code reviewers. By incorporating these verified method names,
our benchmark offers greater practical value and precision for evaluation.
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• The existing test dataset [38] includes many methods with simple names, typically consisting of a single
verb such as ‘get,’ ‘take,’ or ‘listen.’ These intuitive method names are easy to recommend because method
bodies often contain many such tokens. However, code review comments reveal that reviewers prefer
more descriptive and comprehensive names. In fact, the average number of characters in method names
from the existing dataset is 13.18, while in our benchmark, it is 24.90, approximately 88.92% longer.

• The existing techniques show a performance decline across all tasks when applied to our human-reviewed
method names, compared to the results reported in the original studies.

• The evaluation design of existing recommendation-based techniques needs careful reconsideration, as it
may be biased toward specific cases.

In summary, this paper contributes the following:
• The first in-depth investigation of MCC/MNR tools, reflecting a code-review perspective.
• A small, but reliable benchmark, consisting of sample pairs of method names (i.e., buggy and fixed),

method bodies, and review comments. This is also the first manually labeled naming dataset from a code
review perspective. It may serve as a baseline dataset for future MCC/MNR research as the method names
have been confirmed by project reviewers.

• Delving into advanced evaluation methods for MCC/MNR techniques due to variations in performance
measurement protocols within prior literature. Moreover, strategies to construct an improved benchmark
that minimizes manual effort should be examined.

• We conducted in-depth interviews with seven developers currently employed at a tech company, along
with an external postdoctoral researcher and two PhD students. The purpose of these interviews was
to understand the following: 1) whether historically incorrect method names are indeed incorrect and
assess the stability of the changes made to these names, 2) why existing techniques fall short in ensuring
consistency and accuracy in method name checking and recommendation, and 3) the limitations of these
existing techniques when applied in practical, real-world scenarios.

The experimental results show that the review-driven benchmark could provide insights for better naming by
exploiting more context available in the reviews from the experts. The provided reviews in ReName4J also can
give intuitions on how to improve the classification performance by utilizing more information in the body of
the methods.

2 MOTIVATING EXAMPLE
The naming of methods is a critical issue for software engineering and development as method names have a

high impact on the comprehension of the source code [40, 49]. Consequently, developers actively discuss naming
issues frequently during code reviews in commercial and open-source software projects [6]. We first investigate
the method names and review pairs in open-source projects to determine whether the explicitly reviewed method
names could be a better ground truth for MCC and MNR tasks.

Figure 2 illustrates two examples of naming-related reviews from Apache/Shardingsphere and Elastic/Elastic-
search, respectively. Figure 2a shows a case in which a code reviewer recommends using a more suitable method
name for a test while giving the justification that the current name sounds the same as that of another method.
Figure 2b illustrates a renaming argument based on the specific naming conventions of the project. Specifically,
the original name was getRealmRef(), which follows a common Java-Bean naming convention, but the reviewer
suggested instead following the Builder naming convention, illustrated as name(), which implies that the name
should be realmRef().

3https://github.com/apache/flink/pull/14863
4https://github.com/elastic/elasticsearch/pull/82639
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(a) A review from Apache/Flink project.3

(b) A review from Elastic/Elasticsearch project.4

Fig. 2. Real world code reviews on method names.

Investigating various examples, we discovered that the code reviewers tend to comment on the method names
in many ways such that the developers can directly apply a proposed renaming or be inspired to appropriately
change the names. These changes are explicitly discussed, changed, and accepted. We consider that these cases
are more solid than other renaming cases that are only changed and accepted without any discussion in software
development.

3 METHODOLOGY
This section presents an overview of our empirical study. As shown in Figure 3, our study comprises three

steps: (1) constructing a novel method naming benchmark (ReName4J), (2) retraining existing method-name
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recommendation techniques, and (3) testing the performance of the techniques with respect to the benchmark.
Our benchmark, ReName4J collects method renaming instances from code review data such that every instance
is backed by discussions of real developers and reviewers. Based on the benchmark and obtained models, we
conduct two tasks: (1) inconsistency classification of each pair of method name and body (MCC), and (2) method
name recommendation for a given method body (MNR).

10K projects
(Java-large)

Re-Training Trained 
Models

Test phase

GTNM
[ICSE 2022]

Cognac 
[FSE 2021]

Spot 
[ICSE 2019]

430 projects

Preprocessing

BuggyName(…)
{MethodBody}

...

#1

#2

Test Methods
Prediction Results

Target
Techniques

Training Inputs

...

RENAME4J

Benchmark Construction

Top 100 
projects

- ReviewComment
- MethodBody
- BuggyName()
- FixedName()

Patch Parsing #1 Changed_Pair
#2 Changed_Pair
#3 Changed_Pair

...

Review Mapping

Review Parsing

Pull Requests
#1 ReviewComment
#2 ReviewComment
#3 ReviewComment...

Reviewed method pair

MethodName(…)
{MethodBody}

MethodName(…)
{MethodBody}

MethodName(…)
{MethodBody}

[
[
[

𝕄Spot

Verification and Compare

𝕄Cognac

𝕄GTNM

Trained 
Models

𝕄Spot

𝕄Cognac

𝕄GTNM

#1 PredictedName()
#2 PredictedName()...

FixedName()

[
BuggyName(…)
{MethodBody}[

PredictedName()
PredictedName()...

#1 
#2 FixedName()...

#1 PredictedName()
#2 PredictedName()...

#1 PredictedName()
#2 PredictedName()...

#2 
#1 MCC

MNR
PredictedName()
PredictedName()...

#2 
#1 FixedName()#1 

#2 FixedName()...RENAME4J

Fig. 3. Overall procedure for our study.

3.1 Target Techniques
To answer the research questions described in Section 1, we select three target techniques, Spot [38], Cognac [52],

and GTNM [37] as (1) they have been published recently at top software engineering venues and (2) their
implementations are completely reproducible.
Spot: Spot [38] is designed with the intuition “Methods implementing similar behavior in their body code are likely
to be consistently named with similar names, and vice versa”. Notably, Spot adopts unsupervised learning [21] and
lazy learning [1] to embed method names and bodies into numerical vectors. Given a method name and body, it
compares two sets of names. According to the embedding vectors, the first set consists of other method names
similar to the name of the given method and the second set consists of the names of methods whose bodies are
identified as similar to the body of the given method. When the intersection of these two sets is larger than a
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threshold, the method name is recognized as consistent; otherwise, Spot classifies it as inconsistent (i.e., the MCC
task). If the name turns out to be inconsistent, Spot recommends potential consistent names for the method based
on the comparison results on method bodies (i.e., the MNR task).
Cognac: Cognac [52] is a program-structure-independent approach aiming to avoid the out-of-vocabulary
problem. Unlike prior techniques, Cognac not only leverages the local context extracted from target methods
themselves, including code tokens and the associated contexts, but it also considers the global context, which is
the contextual information from other methods such as call relations (i.e., caller/callee information) with the
target method. Technically, it follows the seq2seq paradigm, using the extracted token sequences to infer method
names.
GTNM : GTNM [37] is a transformer-based neural model considering the information of the whole project (global
context). It extracts context from three different levels, given the target method and the project, including (1) local
context, (2) project-specific context, and (3) documentation context. Technically, it employs a transformer-based
seq2seq framework [50] with two encoders and a single decoder to generate the method name. Particularly, we
include GTNM in our study because its design closely resembles that of Cognac while it misses the evaluation of
MCC. Since Cognac has already showcased that an MNR technique can effectively serve as an MCC task, it is
crucial to undertake a comprehensive performance assessment in this context. This addition could shed light on
the potential advantages associated with choosing the right approach for tasks that necessitate a specific tool.

Two other approaches, MNire [42] and DeepName [35] have been recently proposed and shown to outperform
previous approaches. We had to discard MNire [42] due to the unavailability of the source code [52]. Fortunately,
Cognac [52] has been compared against the numbers in the MNire paper with the same dataset, and Cognac
outperforms MNire. We failed to execute DeepName [35] based on its replication package, as the instructions
are not complete, and the author who is in charge of the package did not reply to our questions. Nevertheless,
DeepName is similar to Cognac, in that both use caller/callee information, and both were released at almost the
same time. Both Cognac and DeepName were evaluated against MNire, and they show approximately 10% and
7% improvement, respectively, in the F1-score with the same dataset for the MNR task.

3.2 ReName4J: Naming Review Benchmark
Our study first builds a benchmark based on code review data, which can be used to assess method-name

recommendation techniques. To the best of our knowledge, there is no concrete benchmark for method (re)naming
that incorporates code-review data. Existing techniques are evaluated on a dataset collected from source code
revision history without an associated explanation for the naming changes. Distinguishing between true renaming
tasks and coincidental code changes proves challenging, as developers often disperse a unified modification
across multiple commits [53, 54]. In contrast, ReName4J leverages code review data to collect actual method
renaming tasks, supported by justifications of why the name should be revised. Notably, the dataset could be
applied to both traditional and learning-based approaches.

ReName4J has four components for each method renaming task: (1) ReviewComment: the review comment
explaining why the name should be revised, (2) MethodBody: the relevant method body (i.e., source code), (3)
BuggyName: the method name before refactoring (buggy_method_name()), and (4) FixedName: the method
name after refactoring (fixed_method_name()).

To collect the review and method name pair dataset, we leverage GitHub’s REST API.5 We first crawl the top
100 Java projects sorted by the stars, considering the project’s popularity [20]. Among the top 100 Java projects,
we discard the projects where the discussions are primarily written in languages other than English. This leaves
66 projects as our targets. We then crawled a total of 144, 759 pull requests for these projects. As we only need
to consider pull requests with naming-related reviews, we extract those pull requests that contain keywords

5https://docs.github.com/en/rest
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such as ’naming,’ ’name,’ ’inconsistent,’ and ’descriptive’ in their review comments. Based on the process, we
collected 11, 301 pull requests. A pull request tends to include multiple commits and a commit can be associated
with multiple files. Our dataset thus covers 73, 985 commits and a total of 593,240 associated files.

We preprocess the collected code review data as follows. We break down the patch files to discover the methods
where only the name changes while excluding those whose names have been changed with their body as changes
in the body can naturally affect the name. This step resulted in 1,212 changed method names. Connecting reviews
with their corresponding methods is difficult due to the structure of GitHub’s database, as it does not allow for
direct linking between a review comment and a specific method. Typically, review comments pertain to an entire
pull request. Another obstacle to mapping reviews to methods is that reviewers often comment on external code
links that cannot be accessed through GitHub’s API but are visible on the web. Finally, we tackle the issue by
establishing a connection between the patch files containing commit modifications and the metadata of pull
requests. This metadata encompasses crucial information such as commit hashes, parent hashes and review
comments. A total of three authors manually investigated all pairs of reviews and method names, including only
those with a clear connection between the review and the method. For all the PRs, the three authors voted on
each, reaching agreement on 945 out of 1,212 cases, resulting in an agreement rate of 77.97%. Additionally, all the
267 discrepancies cases were resolved through discussion and consensus to ensure accuracy. The examples in
Section 2 also demonstrate how this connection can be manually labeled by matching the context of the reviews
and methods.

The manual checking and filtering criteria are as follows:
• We include methods where the pull request was accepted by the project’s code reviewer. The methods we

extracted have no specific restrictions, and the code reviewer could be either marked as ’Contributor’ or
’Member,’ as long as they were assigned to review the PR.

• We include methods with names that are directly suggested by the reviewer (e.g., testGetConnectionSes-
sion() → assertGetConnectionSession() | Based on the review: Please rename ‘testGetConnectionSession’ to
‘assertGetConnectionSession’6).

• We include methods with names that are undoubtedly inspired by the review (e.g., completeRestoration()
→ completeRestorationIfPossible() | Based on the review: nit: can we rename this to ‘maybeCompleteTask-
TypeTransition’ or ‘completeTaskTypeConversionIfNecessary’, etc? Right now, it kind of sounds like we just
randomly attempt to convert it to a new task type out of nowhere.7).

• We include methods with names that are recommended based on the project’s naming convention (e.g.,
realmRef() → getRealmRef() | Based on the review: Nit: existing getter methods in this class following the
Builder type naming convention, e.g., name() instead of getName(), while this method uses the JavaBean
naming convention (getXxx). I am OK with either of them but would prefer consistency within a single class8).

• We include methods with names that are reviewed and commented on for consistency (e.g., register() →
getToken() | Based on the review: ‘register’ should be renamed to be consistent with current approach (was
more meaningful when it was stateful)9).

• We ignore simple typos, as they can be noise in the benchmark, as well as example methods.
The selected commits satisfy at least one of the defined criteria. As a result, we identify, as the ground truth, 400

method renaming tasks supported by the corresponding reviews.The selection of 400 tasks was not predetermined
but rather occurred naturally during our process. We found that the directly suggested method names constituted
7.75%, undoubtedly inspired ones were 17.25%, those recommended based on naming conventions were 48%,

6https://github.com/apache/shardingsphere/pull/18618
7https://github.com/apache/kafka/pull/8988
8https://github.com/elastic/elasticsearch/pull/82639
9https://github.com/jenkinsci/jenkins/pull/4239
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and the ones for consistency were 37.50%. These categories sometimes, overlapped because a single method
name recommendation could be influenced by multiple factors. For instance, a method name might be directly
suggested while the reviewer mentions the convention or consistency. In addition, we explicitly eliminate all
the class files associated with the corresponding methods from the training data to ensure that there is no data
leakage [43]. The absolute number is smaller than the datasets used in the prior studies [37, 38, 52], but our
benchmark collects only obvious renaming tasks confirmed by code reviewers and developers. This allows a
more precise evaluation of method renaming techniques. Note that we utilized a standard javalang10 library for
any parsing-related tasks.

To understand the characteristic differences between the existing test oracles [38] and those from our bench-
mark, we further conduct a brief preliminary investigation. Based on our observation, the average number of
characters for the existing test method names and those of our benchmark are 13.18 and 24.90 (approx. 88.92%
longer), respectively, while those of split sub-tokens are 2.52 and 4.53 for each method name. This indicates a
clear difference whereas our benchmark contains method names that are more descriptive, and it suggests that
the code reviewers, in practice, prefer to describe as many parts of the methods as possible.

3.3 Experiment Design
To conduct a fair comparison, we employ the following procedure [52] for all three target techniques. Overall,

we evaluate the three techniques described in Section 3.1 with two tasks: Method Name Recommendation (MNR)
addressing RQ1 and Method Name Consistency Checking (MCC) addressing RQ2, after retraining them by using
the datasets. Then, we feed the method name/body pairs in ReName4J to the (retrained) target techniques and
measure the performance with respect to several metrics. In addition, our study evaluates the techniques on
more realistic data (i.e., a highly unbalanced dataset including the name/body pairs in ReName4J) to see their
effectiveness in a different scenario.

3.3.1 Retraining. To avoid bias from the dataset, we re-train the recommendation-based target techniques
(denoted as M, e.g., M�>6=02 and M�)#" ) with a single identical dataset. We leverage the Java-large dataset,
released by Alon et al. [4], as the training and validation dataset for two, Cognac [52] and GTNM [37] of our
target techniques. This dataset is the most popular [4, 5, 35, 37, 42, 52] and well-maintained for the method name
recommendation task. It consists of 10,222 top-ranked Java projects from GitHub, including 14,458,828 methods
and 1,807,913 unique files. We randomly shuffled and split all the projects into 9,772 training and 450 validation
projects. In addition, to avoid any data leakage, we carefully checked and eliminated all methods included in
ReName4J (Section 3.2) from the training dataset so that there is no intersection between training and testing
datasets. Table 1 shows the training and validation data statistics.

Exceptionally, we use a different training dataset for the checking-based approach (denoted as M(?>C ), due to
its known scalability issues, which we confirmed with its authors [38]. The Java-large dataset, which is almost
seven times bigger than the dataset originally used for training Spot, is impractical for Spot’s training according
to its authors. Consequently, we utilize the original training dataset used by Spot’s authors to reproduce the
model. This original dataset for Spot includes 2,116,413 methods extracted from 430 Java projects.

3.3.2 Method Name Recommendation (MNR) Task. The first task to measure the effectiveness of the target
techniques is recommending method names for a given method implementation (i.e., method body). In this task,
each target technique, M, takes a method body (MethodBody in ReName4J) and produces a set of candidate
method names that best describe the body, as described in the following equation:

M : �∗ → # ∗ (1)

10https://github.com/c2nes/javalang
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Train Validation Total
Projects 9,772 450 10,222
Files 1,756,282 51,631 1,807,913
Methods (for M�>6=02 and M�)#" ) 13,992,028 466,800 14,458,828

Methods (for M(?>C ) 2,116,413 - 2,116,413
Table 1. Statistics of the training and validation dataset.

where � is an alphabet allowed for a method body and # is an alphabet allowed for a method name, respectively.
�∗ and # ∗ are sets of sequences over � and # , respectively. After feeding a method body, 1 ∈ �∗, available in
ReName4J, we produce a recommended name by M(1) = = ∈ # ∗. We then compare = with our ground truth
name, FixedName, in the benchmark. The results of this task for each technique are discussed in Section 4.1 as
RQ1.

While Cognac [52] and GTNM [37] were designed for method name recommendation, Spot [38] was originally
built for consistency checking and later added recommendation functionality. To ensure a fair comparison, we
replaced the target method names of our test methods with meaningless tokens when using Spot, which only
predicts method names when they are classified as inconsistent.

3.3.3 Method Name Consistency Checking (MCC) Task. Instead of recommending a name directly, it might be
useful if a technique clarifies whether a given method name is inappropriate to describe the method body. This
consistency check can help developers or code reviewers scan a project and figure out the overall naming practice.
Equation 2 represents the MCC task, DM, for a given method body 1 ∈ �∗, method name = ∈ �∗, and specific
name recommendation technique M.

DM : �∗ × # ∗ → {�, ��} (2)

where � and �� denotes consistent and inconsistent name. Basically, we expect that the verdict should be � when
feeding a method body (MethodBody) and corresponding FixedName in ReName4J. Otherwise, it should be ��
if BuggyName is given. The results of this task are discussed in Section 4.2 as RQ2.

State-of-the-art techniques [35, 42] claimed that it is possible to conduct method name consistency checking
based on method name recommendation by employing a specific similarity checking metric, described in the
following subsection with other metrics. Several prior method name recommendation approaches [35, 37, 52] use
this hypothesis to check the consistency of the method names obtained using their recommendation models.

3.3.4 Reflection of the Real World. In the real world, the likelihood of encountering inconsistent method names
is significantly lower than those that are consistent. To accurately reflect this situation, we adopt another dataset.
As our target methods in the benchmark are small parts of multiple class files, there exist remaining methods
from these files (i.e., the majority of Java class files tend to consist of multiple methods). The quantity of these
remaining methods is substantially greater (13,137) in comparison to our test oracles (400). These are stable
methods that have not been modified, and thus, we consider the name of a method as StableName and a body as
StableBody. Note that these are not explicitly identified as stable during the code review process, but this is a
common assumption as checking every single method that is not reviewed is practically infeasible. Also, this
is the same process with a prior study [38]. This implies that we can use them to simulate a realistic scenario,
and we utilize them for our experimentation in addressing real world reflection (i.e., RQ3), which aims to reflect
reality. To conduct an experiment on such a dataset, we take the same protocol as the MCC task while the verdict
should be � when feeding a StableName. Otherwise, it should be �� if a BuggyName is given. The results of
this task are reported in Section 4.3 as RQ3.
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3.4 Performance Metrics
3.4.1 Metrics for Method Name Recommendation. As the objective of the MNR task is to recommend the same or
similar names to those that human developers wrote, we compare the ground truth names in the ReName4J with
the names generated by the target techniques. Note that the unit of comparison is tokenized words (i.e., sub-
tokens) of the names rather than the whole chunk of the names to capture partial matches. We employ Precision,
Recall, F1-score, and EMAcc (Exact Match Accuracy) to evaluate the results of the MNR task, as represented in
Equations 4, 5, 6, and 7, respectively.

We use the followings notations for the equations: > ∈ # ∗ and ? ∈ # ∗ are a ground truth name (i.e., test oracle)
in ReName4J and a name recommended by a targeted technique based on the method body corresponding to > ,
respectively. C>:4=() is a function defined from # ∗ to its power set as follows:

C>:4= : # ∗ → P(# ∗) (3)

where C>:4=(=0<4) produces a token set after tokenizing =0<4 . This study applies the camel case tokenization
as it is the naming convention of Java.
• Precision"#' (positive predictive value): is the metric that represents an estimation of how many tokens

are correctly predicted within all the predicted tokens. It is expressed as follows:

Precision"#' (>, ?) =
|C>:4=(?) ∩ C>:4=(>) |

|C>:4=(?) | (4)

• Recall"#' (sensitivity): is themetric that represents an estimation of howmany tokens are correctly predicted
within all the oracle tokens. It is expressed as follows:

Recall"#' (>, ?) =
|C>:4=(?) ∩ C>:4=(>) |

|C>:4=(>) | (5)

• F1-score"#' : is the harmonic mean of the precision and recall. It weights the two ratios (precision and recall)
in a balanced way:

F1-score"#' (>, ?) =
2 × %A428B8>=(>, ?) × '420;; (>, ?)
%A428B8>=(>, ?) + '420;; (>, ?) (6)

Furthermore, we take EMAcc(>, ?), i.e., Exact Match Accuracy, to assess whether a technique can recommend
a name exactly the same as the ground truth name in ReName4J. The function is defined as:

EMAcc : # ∗ × # ∗ → {0, 1} (7)

where EMAcc(>, ?) = 1 if > and ? are identical. Otherwise, the value is 0.

3.4.2 Metrics for Method Name Consistency Checking. To measure the performance on the MCC task, we use
metrics from prior studies [35, 38, 42, 52]: Precision, Recall, F-score, and Accuracy. MCC can have four possible
outcomes: IC classified as IC (i.e., true positive=TP), IC classified as C (i.e., false negative=FN), C classified as
C (i.e., true negative=TN), and C classified as IC (i.e., false positive=FP). Accordingly, the metrics are defined
as follows: Precision�� =

|)% |
|)% |+|�% | , Recall�� =

|)% |
|)% |+|�# | , Precision� =

|)# |
|)# |+|�# | , Recall� =

|)# |
|)# |+|�% | , the F1-

score is computed as 2×%A428B8>=×'420;;
%A428B8>=+'420;; for each class. Moreover, the �22DA02~ on the whole dataset is defined as

|)% |+|)# |
|)% |+|�% |+|)# |+|�# | .
Additionally, the recommendation-based approaches need a threshold value ) , which is used for the similarity

between the predicted name and buggy or fixed names. It is manually set for the MCC task in prior studies [35,
42, 52], and following them, we set it as 0.85 in this study.
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4 EXPERIMENTAL RESULTS
This section reports all the results of our target techniques and answers the research questions.

4.1 RQ1: Can the target techniques recommend the appropriate names for a given method body?
Setup: This research question aims to evaluate the effectiveness of existing tools in suggesting suitable method
names based on code review scenarios. The focus is on whether these tools can accurately recommend appropriate
method names for methods under consideration in code reviews, i.e., when they are evaluated on ReName4J
instead of their original datasets. Following the protocol described in Section 3.3.2, we feed each MethodBody
in ReName4J to each technique and take the corresponding recommended name as a result. After getting the
results, we compute the performance based on the metrics defined in Section 3.4.1.

Results and Analyses: The target techniques show lower performance on ReName4J than in their original
studies. Table 2 shows the MNR results as G/~, where G is our result and ~ (in light grey) is the previously reported
result. Note that Spot [38] did not report on the performance of the MNR task with the metrics described in
Section 3.4, but rather mainly uses first token matching. Thus, we cannot directly compare it with the original
performance of Spot. Still, Spot performs worst among the target techniques.

Spot [38] Cognac [52] GTNM [37]

EMAcc 3.50 / - 8.57 / 51.80 14.73 / 62.01
Precision"#' 30.79 / - 38.59 / 71.40 47.39 / 77.01
Recall"#' 22.90 / - 25.12 / 61.90 41.80 / 74.15
F1-score"#' 26.27 / - 30.49 / 66.30 44.42 / 75.60

The gray values (nn.nn) denote the reported results in their papers while ‘-’ indicates that such results
are not available.

Table 2. Results for the Method Name Recommendation.

Thanks to ReName4J, where all renames are backed by code review (i.e., the ReviewComment component),
we can figure out the reason why the techniques fail to recommend proper method names. Cognac incorrectly
recommends size() for a method, and the following review11 corresponds to the case in which BuggyName and
FixedName are size() and approximateNumEntries(), respectively:

Reviewer A: It seems like this method doesn’t return an exact “size” for the RocksDb implementation so we need to spec it differently if
we want to include it. We should also consider the right name and whether we actually want to expose it.
…
Reviewer B: “approximate” sounds good. Also to differentiate with number of bytes as @anotherReviewer pointed out on the ticket, how
about use “approximateNumEntries”?

According to the review comment corresponding to the method name, the reviewers suggested “approximate…”
since the function returns an approximated size instead of the exact “size” of a specific container.

ReName4J can help improve a method name recommendation technique as it provides the rationale of a
method renaming, written by real developers. For example, the above example suggests that researchers should

11https://github.com/apache/kafka/pull/1486#discussion_r66461876
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focus more on semantic and global context information rather than local context. Here is another example:12
Cognac and GTNM recommends withPartition() and createTopic(), respectively, for the following MethodBody:

1 {

2 return new TopicPartition(

3 record.topic(), record.partition () == null ?

4 RecordMetadata.UNKNOWN_PARTITION : record.partition ());

5 }

while the actualBuggyName and FixedName in ReName4J are createTopicPartition() and extract-TopicPartition().
The corresponding ReviewComment is:

Reviewer: This (“createTopicPartition”) is not a very good name since “creating a partition” usually means calling createPartitions. How
about “extractTopicPartition”?

This example motivates that we need to leverage global context such as other source code in the same project
since there are similar method implementation names (e.g., createPartitions() and createTopics()) in other source
files.

On ReName4J, the techniques are less successful at recommending appropriate method names (MNR) than in
previous evaluations. Code review comments may provide insights for better name recommendations, such as
exploiting context information available in other methods of the same classes or modules.

4.2 RQ2: Can the target technique detect inconsistent method names?
Setup: This research question aims to assess the ability of the target techniques to identify inconsistent method
names. The study evaluates the effectiveness of each technique in detecting inconsistencies in method names by
comparing BuggyName and FixedName pairs with their corresponding MethodBody. The goal is to determine
if the techniques can classify method names as inconsistent or consistent based on the provided data. This is
particularly related to the MCC task described in Section 3.3.3. Note that we follow the hypothesis described
in a prior study [38] that the methods that have not been commented on in pull requests to be renamed have
consistent names. We feed a pair of a BuggyName and the corresponding MethodBody in ReName4J to each
technique; we expect that these are classified as inconsistent names. In addition, we feed a pair of a FixedName
and the corresponding MethodBody; we expect that they are classified as consistent names.

After constructing a confusion matrix based on the four possible outcomes, we compute values for the four
metrics described in Section 3.4.2. The computed values are shown in Table 3. The results follow the form G/~ used
in Table 2, where G is the result on ReName4J, and ~ is the previously reported result. As there are no previous
MCC results for GTNM, the table does not include the previous values in this case. Nevertheless, it is evident
that GTNM can serve as a valuable tool for consistency checking. This is underlined by the fact that a similar
methodology has been employed in the development of Cognac, which also aims at name recommendations.

Results and Analyses: As for the MNR task, most of the values drop from the original studies except for the
case of Recall�� for Spot. The overall degradation is less than the MNR task, but some cases are still significant.
For example, the Recall� and F1-score� values of Spot and Cognac drop from 38.20% and 55.60% to 5.00% and
14.25%, respectively. This indicates that most of the FixedName andMethodBody pairs are incorrectly classified
as inconsistent ones. Although the drop of Precision�� and Precision� is not as significant as the drop in Recall�
and F1-score� , the values are just around ≈ 50, which indicates that the performance is not better than random
classification, as the MCC task is fundamentally a binary classification.

12https://github.com/apache/kafka/pull/11689#discussion_r788921625
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Spot [38] Cognac [52] GTNM [37]

Precision�� 50.52 / 56.80 48.27 / 68.60 43.56 / -
IC Recall�� 97.00 / 84.50 80.00 / 97.60 66.00 / -

F1-score�� 64.44 / 67.90 60.21 / 80.60 52.49 / -

Precision� 62.50 / 72.00 41.61 / 96.00 29.90 / -
C Recall� 5.00 / 38.20 14.25 / 55.60 14.50 / -

F1-score� 9.26 / 49.90 21.23 / 70.40 19.53 / -

Accuracy 51.00 / 60.90 47.12 / 76.60 40.25 / -
The gray values (nn.nn) denote the reported results under their own test oracle, while ‘-’ indicates that
such results are not available.

Table 3. Results for Method Name Consistency Checking.

The following example shows the reasons for some failures. Cognac and GTNM differently classify the following
pair of BuggyName and MethodBody as consistent and inconsistent, respectively.

(1) BuggyName: append()
(2) MethodBody:

1 {

2 return append(lastOffset < 0 ? baseOffset : lastOffset + 1,

3 timestamp , key , value);

4 }

whereas the FixedName is appendWithOffset() corresponding to the MethodBody. Both Cognac and GTNM
classify the pair of this FixedName and the MethodBody as inconsistent. The ReviewComment13 is as follows:

Reviewer: Hmm, can we think of another name for the methods that increment the offset automatically?
…
Committer: Or maybe this can be the default and the other can be named “appendWithOffset”?
…
Reviewer: That works for me.

The techniques fail to correctly classify both the BuggyName and the FixedName since they recommend
append() and addrecord() as method names. This indicates that the techniques should better utilize the information
available in MethodBody as it mentions “Offset” tokens several times. In addition, the reviewers talk about the
method of incrementing the offset automatically.

13https://github.com/apache/kafka/pull/2282#discussion_r93328221
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The target techniques achieve a performance similar to random classification as they overclassify consistent
names as inconsistent names. The models may struggle with over-classification due to the nuanced nature of
human-reviewed names, which often require a deeper understanding of the code context. A potential significant
factor here could also be the difference in complexity and length of method names between our benchmark and the
existing datasets, which may challenge the models trained on simpler examples. The reviews in ReName4J can
give intuitions on how to improve the classification performance, such as utilizing more information in the method
body.

4.3 RQ3: What happens when we test the effect of balanced vs. imbalanced data?
Setup: The objective of this research question is to assess the efficacy of each target technique when evaluating
them on an imbalanced dataset (a huge number of consistent pairs and a small number of inconsistent ones),
which reflects the MCC task in real practice, as outlined in Section 3.3.4. Similar to RQ2, we feed the pairs of
method names and bodies. For inconsistent pairs, we assess all the BuggyName and MethodBody inconsistent
pairs in ReName4J using each technique. For consistent pairs, we assess all the StableName and StableBody
pairs from the dataset described in Section 3.3.4; we expect that they will all be classified as consistent. This is the
‘imbalanced dataset’ (400 vs. 13,137) in this study.

Results and Analyses: On the imbalanced dataset, the target techniques mostly fail to classify consistent names.
The results are shown in Table 4 and denoted as G/~, where G is the result of the imbalanced dataset described
above, while ~ is the result for the balanced dataset (same with Table 3). %A428B8>=�� values are significantly
decreased, with a decline of 90.40%, 94.39%, and 94.90% for Spot, Cognac, and GTNM, respectively. As only a few
inconsistent pairs are classified as consistent, %A428B8>=� values rise, with an increase of 55.82%, 131.36%, and
212.41%, respectively.

Spot [38] Cognac [52] GTNM [37]

Precision�� 4.85 / 50.52 2.71 / 48.27 2.22 / 43.56
IC Recall�� 97.00 / 97.00 80.00 / 80.00 66.00 / 66.00

F1-score�� 9.24 / 64.44 5.25 / 60.21 4.30 / 52.49

Precision� 97.39 / 62.50 96.27 / 41.61 93.41 / 29.90
C Recall� 5.56 / 5.00 15.25 / 14.25 14.24 / 14.50

F1-score� 10.52 / 9.26 26.32 / 21.23 24.72 / 19.53

Accuracy 9.89 / 51.00 17.11 / 47.12 15.73 / 40.25
The gray values (nn.nn) denote the previous results from Section 4.2.

Table 4. Results for Method Name Consistency Checking with the real world reflecting dataset.

The results in Table 4 indicate that the techniques are highly biased to classify method names and body pairs
as inconsistent ones. The following pair14 shows an example of incorrect classification. Both Cognac and GTNM
classify the following pair of StableName and StableBody as inconsistent with different recommendations.

(1) StableName: testWithStateTtlDisabled()

14https://github.com/wangpeibin713/flink/blob/748ad82745d9d493922150fe007136e125a50209/flink-table/flink-table-runtime-
blink/src/test/java/org/apache/flink/table/runtime/operators/deduplicate/ProcTimeDeduplicateKeepLastRowFunctionTest.java
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(2) StableBody:
1 {

2 ProcTimeDeduplicateKeepLastRowFunction func =

3 createFunctionWithoutStateTtl(true , true);
4 ...

5 testHarness.processElement(insertRecord("book", 1L, 12));

6 ...

7 // Keep LastRow in deduplicate may send UPDATE_BEFORE

8 ...

9 }

Both Cognac and GTNM fail to correctly recommend StableName. They suggest testKeepLastRow- Function()
and testInsertWithUpdate(), respectively. This result indicates that the techniques need to further focus on the
invoked methods as the key was the method, createFunctionWithoutStateTtl().

Overall, the techniques need to relax the threshold values when detecting inconsistent pairs. For the fol-
lowing StableBody,15 Cognac and GTNM recommend getAlterResource() and createSimpleResourceStatement(),
respectively, which are quite similar to the actual StableName, createAlterResourceStatement():

1 {

2 return new AlterResourceStatement(Collections.singleton

3 (new DataSourceSegment(resourceName ,

4 "jdbc:mysql ://127.0.0.1:3306/ ds_0",

5 null , null , null , "root", "", new Properties ())));

6 }

As the recommended names and StableName share many common tokens, it is appropriate to classify the above
case as consistent, but the techniques fail to correctly classify it because their threshold values are too tight.

The imbalanced dataset, reflecting the real practice, may reveal shortcomings such as too strong threshold values
for inconsistent name classification.

5 USER STUDY
Setup: This user study aims to gather in-depth insights from software developers regarding their experiences
and practices. To ensure the results are statistically significant, we calculated the required number of samples to
achieve a 95% confidence level, with a margin of error of ±5%. This calculation determined that a minimum of 197
samples was necessary. Consequently, we conducted interviews with 200 samples to meet and slightly exceed
this threshold.

We asked participants to provide information about their backgrounds as developers. The following list was
the first questions: (1) Years as a professional software developer; (2) Years of experience with Java code; (3) How
often they write Java programs in their current job [Likert scale, 1-5]; and (4) Academic background [BSc, MSc,
and PhD]. Table 5 shows the developers’ background details.

Consequently, with 200 instances across 10 developers, we randomly distributed 20 samples to each participant.
For each method body provided, we presented four distinct questions to assess whether the method name was
suitable and a sub-question follows if the answer is negative. The method names presented were categorized into
different origins: Buggy, Fixed, Cognac, and GTNM. To ensure unbiased responses, the origins of these method
names were concealed from the participants.

The questionnaire has been designed as follows:
15https://github.com/open-beagle/shardingsphere/blob/5be6a2c81c647cdffb1f7f17db9c69204be14b4e/shardingsphere-proxy/shardingsphere-
proxy-backend/src/test/java/org/apache/shardingsphere/proxy/backend/text/distsql/rdl/resource/AlterResourceBackendHandlerTest.java#
L132
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Participant Affiliation Type Degree Current Position Years of Dev. Java Exp. Daily Java Usage Time Spent (mins)

1 Academia PhD Research Fellow 12 4.5 5 50
2 Academia Bachelor PhD Student 2 2 5 85
3 Academia Master PhD Student 3 1.5 4 120
4 Industry PhD Senior Researcher 6.5 5 5 40
5 Industry Master Senior Researcher 4 2.5 5 44
6 Industry PhD Senior Researcher 5.5 5 5 38
7 Industry PhD Principal Researcher 7.5 5 5 60
8 Industry PhD Senior Researcher 4 3 5 110
9 Industry Master Principal Engineer 10 7 5 30
10 Industry Bachelor Junior Engineer 7 5 5 78

Table 5. Background details of real world developers.

Given a {MethodBody},
• Q1.1: Is the following name, {BuggyName}, consistent with its body?
• Q1.2: If No, why?

– Completely inconsistent.
– Partially inconsistent.
– Coding Convention/Style issue.
– Mistake/Typo.
– Depends on the broader context.

• Q2.1: Is the following name, {FixedName}, consistent with its body?
• Q2.2: If No, why?

– …

Results and Analyses: On the background checking questions, the participants in the study had an average of
6 years of development experience. Regarding Java development, the average year was 4.5 and most of them
scored 5 on the Likert scale except one with 4. Among them, five held PhDs, three had Master’s degrees, and two
had Bachelor’s degrees. Additionally, each interview lasted approximately 65.5 minutes, allowing us to gather all
the responses.
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Fig. 4. Statistics of developer answers on method names for given method bodies.

Analysis of YES/NO Responses: Figure 4 presents a clear overview of the voting patterns for various method
names. The results indicate a strong preference among participants for the FixedName, with the majority casting
a “YES” vote, suggesting that developers widely recognize the FixedName as accurate and appropriate for the
given method bodies. In contrast, the BuggyName, as well as the SuggestedNames by the target approaches
(Cognac and GTNM), received predominantly negative votes, as evidenced by the significantly higher “NO”
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responses. This pattern reveals a general skepticism or disagreement among developers regarding the correctness
or suitability of these names.
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Fig. 5. Statistics of developer answers on the rationale of negative votes.

Analysis of Specific Question Scores: Figure 5 presents the detailed rationale scores for negative responses. When
developers voted “NO” for BuggyName, the majority cited it as Partially inconsistent, indicating that while some
aspects of the name may align with the method’s functionality, there are notable inconsistencies. As expected,
FixedName received generally low counts for negative responses, reflecting its overall acceptance. However,
among those who did vote negatively, Partially inconsistent was also the most commonly selected rationale,
suggesting that while generally well-received, some minor issues or ambiguities might still exist.

In contrast, SuggestedNames by Cognac were frequently labeled as Completely inconsistent by participants,
highlighting significant misalignment with the method’s functionality. Additionally, these names were often
considered to Depend on the broader context, implying that developers found these names to be ambiguous or
requiring additional context to be understood. For GTNM, the trend was somewhat more favorable, with more
participants selecting Partially inconsistent rather than Completely inconsistent. This presents that while GTNM’s
suggestions were not fully aligned with expectations, they were perceived as closer to being appropriate compared
to those from Cognac.

The results of this interview suggest that automated tools like Cognac and GTNM may require further
refinement to better align with developer expectations. On the other hand, the strong preference for FixedName
implies that manual corrections based on the code review process are currently more effective in achieving
correct names that are widely accepted by the developer community.
Analysis of StableNames: Additionally, we randomly sampled 30 pairs of stable method names that were incor-
rectly detected as inconsistent (i.e., <StableName, SuggestedName>). To assess how developers perceive the
suggested names for these methods, we conducted an experiment involving three participants from the industry.
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Each participant was provided with all 30 cases for evaluation. The 30 SuggestedNames were generated by our
target approaches, with 15 produced by Cognac and 15 by GTNM, respectively.

Among the three developers, two marked the StableNames as consistent for all 30 sample cases. Only two
cases from one developer were marked as partially inconsistent. During a follow-up phone discussion with this
developer, they confirmed that the two exceptions were indeed only partially inconsistent, and they did not have
strong objections to the StableNames, as they were very similar to the SuggestedNames.

Developers still prefer to see the method names recommended by reviewing the code as such names are recommended
by the expert, knowing the details of project environments. This suggests that the recommended names in the code
review process are often preferred and indicates that our benchmark can be effectively utilized to reflect real-world
requirements. Overall, there are still research gaps that need to be addressed to improve existing MCC/MNR
approaches.

6 DISCUSSION
We mainly discuss the experimental settings for evaluating the target techniques as well as the differences

between the datasets. The following discussion could also deliver actionable insights for future research directions.

6.1 Threshold T used in the MCC task
When performing the MCC task, most of the techniques compute the similarity between the ground truth

name and the predicted name. This similarity calculation bears a threshold value) , which is heuristically decided
in the previous studies [35, 42, 52]. This threshold value then determines the performance. However, the choice
of ) depends on the technique. For example, MNire [42] takes various values for ) while Cognac [52] uses 0.85
as a fixed value. Moreover, the threshold is chosen to maximize the performance of each technique.

Although the impact of the threshold ) is investigated in a literature [42], it was only to maximize the
performance of each technique. This indicates that it needs to be tuned depending on the approach and the
choice of ) potentially causes bias in different scenarios. Furthermore, one of the prior studies [52] stated, “we
never know a method name is consistent or not before the detection in practice” regarding the decision on the
threshold. This may imply that their test oracles cannot guarantee the quality for evaluating MCC/MNR tasks. We
investigate the performance of the recommendation-based techniques with) as 1 as we hypothesize FixedName
in ReName4J may be the ground truth.

The results in Table 6 indicate that the target techniques are slightly influenced by the threshold value. Cognac’s
recommendations for the �� class do not change at all. However, there are more false positives for the � class,
reducing the precision. More importantly, both subjects experience a decrease in performance for the � class.
Intriguingly, there is a slight performance increase in GTNM’s recommendation on Recall�� class (i.e., 66.00% to
66.75%). The increase in true positives has resulted in this phenomenon, which is unexpected as it is commonly
believed that the higher the threshold value, the more difficulty the techniques will encounter. Inspired by this,
we motivate the following discussion.

6.2 Measurement of True Positives for the Inconsistent Class
During the MCC task of recommendation-based techniques, i.e., Cognac and GTNM, we discovered that the

initial evaluation design may be biased due to the following reasons. A binary classification is not suitable for
these approaches, as they initially recommend and then check the inconsistency based on the predictions. In
this way, a recommended method name cannot ensure if a method name is inconsistent or consistent. Previous
studies, such as Cognac [52], define a true positive in their evaluation as a case where the similarity between
the predicted tokens and the oracle tokens from the inconsistent name is less than the threshold value ) (i.e.,
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Cognac [52] GTNM [37]

Precision�� 47.98 / 48.27 43.49 / 43.56
IC Recall�� 80.00 / 80.00 66.75 / 66.00

F1-score�� 59.98 / 60.21 52.66 / 52.49

Precision� 39.85 / 41.61 28.49 / 29.90
C Recall� 13.25 / 14.25 13.25 / 14.50

F1-score� 19.89 / 21.23 18.09 / 19.53

Accuracy 46.62 / 47.12 40.00 / 40.25
The gray values (nn.nn) denote the previous results from Section 4.2 as we aim to
discover the effects of the threshold value) .

Table 6. The results of Method Name Consistency Checking with the fixed value for threshold ) as 1.

(8<(>, ?) < ) ). This means that the lower the model’s recommendation performance, the more true positives it
has for the inconsistent class. However, this approach may not accurately reflect the goal of improving method
name consistency, as the predicted names should ultimately match the ground truth names. To address this, we
revised the evaluation setting and only consider a predicted name as a true positive if its similarity to the oracle
tokens from the consistent name is equal to 1, as this represents a perfect match with the ground truth.

Cognac [52] GTNM [37]

Precision�� 6.79 / 48.27 15.56 / 43.56
IC Recall�� 6.25 / 80.00 15.75 / 66.00

F1-score�� 6.51 / 60.21 15.65 / 52.49
The gray values (nn.nn) denote the previous results from Section 4.2 as we aim to check
the phenomenon after the correction.

Table 7. The results of Method Name Consistency Checking with corrected measurement of the true positives for IC class.

The findings presented in Table 7 indicate a marked decrease in performance compared to the initial results.
Cognac decreased by 86%, 92%, and 89% for %A428B8>=�� , '420;;�� , and F1-score�� , respectively. GTNM performed
slightly better, with decreases of 64%, 76%, and 70% on each metric. The results indicate that recommendation-
based approaches demonstrate significant limitations on inconsistency checking. Overall, there is a need for
further improvement in such approaches as the results in Table 7 do not seem to be promising. Additionally, such
an evaluation protocol requires careful examination.

6.3 Size of the Test Dataset
On the method name recommendation. Most recommendation-based studies [35, 37, 42, 52] employ the

test dataset from Java-large [5] for the MNR task. This dataset includes approximately 636K test methods from
61K files which is a very large number compared to our datasets. Although we understand that the bigger the
dataset is, the more solid and robust the evaluation that can be conducted, such a dataset has been solely cloned
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from open-source projects without any filtering criteria. This suggests that there is no evidence that such method
names are ever changed, let alone whether the changes are reviewed by others.
On the method name consistency checking. Different from the dataset commonly used for the MNR

task, most prior techniques [34, 35, 38, 42, 52] leverage the dataset from a checking-based study [38], which
has been constructed using specific filtering criteria. The filtering criteria include methods whose names have
been changed in a commit without any alteration to the body code. Additional conditions, such as disregarding
method changes with typographical errors and those that do not involve changes to the first sub-token, are also
applied as the techniques are sensitive to such cases. These filtering criteria ensure that the dataset only contains
methods whose names have been explicitly changed by developers. The dataset comprises 2,805 methods from
430 projects for the test phase. However, it cannot guarantee that the method name changes are associated with
the inconsistency of the method name and its body since there are cases where the developer only changed the
method body first and then fixed the name after [53, 54].

On our benchmark. Our main goal is to conduct an empirical investigation of the existing tools with different
perspectives (i.e., code review). While we continuously collect and craft more method and review pairs, we
acknowledge that the current number of test oracles in this study is relatively small compared to the existing ones.
As the ultimate goal of the MCC/MNR tasks is to be as precise and practical as possible, it is vital that the test
oracles closely resemble the ground truth. To achieve this, we propose utilizing a code review process involving
the code reviewers as a means to enhance the quality of the data. We demonstrate the significant differences in
the lengths of names between the method names from our benchmark and those of existing datasets. This may
imply that the benchmark can be leveraged to evaluate MCC/MNR techniques with different scenarios as we
described in earlier sections.

In summary, the set of test oracles used for theMNR task is the largest, but its practical usefulness is questionable.
The dataset used in the MCC task cannot guarantee whether the method name changes are associated with the
inconsistency checking task or coincident code changes as they are collected without considering the rationale
behind them. Meanwhile, our benchmark dataset is composed of methods that have been reviewed and explicitly
pointed out by code reviewers of open-source projects. As we continually extend the benchmark, we expect it
will allow for a more comprehensive evaluation of MCC/MNR techniques.

6.4 Key Distinctions
On the Incorporation of Code Review Data: ReName4J leverages code review data from pull requests on

platforms like GitHub to collect actual method renaming tasks supported by justifications provided in review
comments. This inclusion of code review context could provide valuable insights into why method names are
changed, enhancing the dataset’s relevance and practicality.
On the Ground Truth Validation: Unlike existing datasets, ReName4J rigorously validates method names

through project code reviewers. This validation process ensures that the method names in the dataset have been
thoroughly checked and accepted by experts, enhancing the dataset’s reliability and accuracy.

On the Comprehensive Method Naming: The dataset includes method names that are more descriptive and
comprehensive, reflecting the preferences of code reviewers for meaningful and informative method names. This
contrasts with existing datasets that may contain simpler or less informative method names, highlighting the
importance of realistic and context-rich data for method name recommendation tasks.
On the Contextual Information: ReName4J provides not only method names but also associated review

comments, method bodies, and metadata, offering a rich source of contextual information for evaluating method
name recommendation techniques. This additional context can help algorithms better understand the rationale
behind method name changes and improve recommendation accuracy.
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In existing datasets, method names may be simplistic and lack validation from code review processes. For
instance, a dataset with method names like “get”, “take”, or “listen” may not capture the complexity and nuances
of real-world method naming practices. In contrast, ReName4J includes method names like “retrieveCustomer-
Information” or “processPaymentTransaction” which are more representative of actual naming conventions
observed in code reviews.

6.5 Possible Solution and Future Direction
Besides utilizing the review datasets, several potential approaches can be explored to improve the detection

of inconsistent method names. First, leveraging enhanced contextual analysis by utilizing surrounding code
information, such as class names and variable names, can provide a deeper understanding of appropriate method
names. Second, advanced machine learning techniques, including fine-tuning models on diverse datasets and
employing ensemble methods, can significantly enhance detection accuracy. Third, curating better-quality
training data, generating synthetic examples, and establishing a user feedback loop for continuous learning and
improvement may be crucial for detecting inconsistent names as well. Finally, collaborating with the developer
community could establish more practical applications. These solutions not only address current challenges but
also pave the way for future advancements in method name consistency detection. We believe that our study can
offer diverse perspectives, particularly in the realm of code-related human interactions. We also plan to extend
our dataset by incorporating method names from additional programming languages to broaden the scope and
applicability of our findings.

6.6 Threats to Validity
Threats to external validity may lie on the targeted three techniques [37, 38, 52] that are open-source;

thus, the results may not be representative of other techniques or closed-source techniques. Furthermore, as
we consider approaches targeting Java, our conclusions are only valid for this language. Exploring training and
testing models on individual project data may have further value, and it highlights the complexity of naming
conventions across different environments. However, our current study aims to provide a broad understanding
of naming conventions by focusing on a diverse set of top Java projects. A threat may lie in the dataset as well.
We utilize a common dataset for training all the recommendation-based techniques, and such a dataset can
possibly be biased, which could lead the models in the wrong direction. To mitigate this threat, we incorporate
a large-scale dataset [4] that consists of high-quality and well-maintained open-source projects. The identifier
names in these large-scale projects are known to be mostly consistent [4, 5]. Additionally, such approaches focus
on learning common features from the majority of the methods. As a result, during the training phase, a natural
mitigation of this concern could be attained.
Threats to internal validity may include human-reviewed method names in our benchmark. To address this
threat, the authors cross-checked the method names and bodies. We found that there exist very long method
names with huge bodies which could be ambiguous to decide whether the names are consistent or not. All the
authors who cross-checked the method names agreed on the final version of the benchmark. In addition, although
it is not guaranteed that all positive items have been identified, appropriate rationales for the name changes could
support the quality of the naming dataset as well as recommendation tasks. Additionally, the method renaming
cases that undergo discussion may indicate ambiguity in choosing the “best” name for a given method. This
suggests that our results might represent a lower boundary of acceptable names. Many other valid names might
not have been discussed or selected as the final choice, implying that the actual performance could be better than
indicated by our benchmark. This potential lower bound should be considered when interpreting the results.
Threats to construct validity relate to the evaluation metrics we employed. We took the same metrics as target
techniques [37, 38, 52], which are Accuracy, Precision, Recall, F1-score, over sub-tokens, and EMAcc. Although
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there may exist other potential metrics to measure the performance of MCC/MNR techniques, evaluating such
techniques with the prior metrics over sub-tokens is the approach taken by all the related literature.

7 RELATED WORK
Empirical Investigation on Identifier Naming. Based on the assumption, poor names make programs

harder to understand and maintain, many researchers [11, 14, 36, 49] have conducted empirical investigations
on naming source code identifiers. The majority of these studies explore the impact of names on source code
readability [18, 45], program comprehension [23, 44, 51], and software maintainability [12]. In addition, several
studies [22, 29] investigate the unintended inconsistency of the identifiers. Recently, researchers [6, 27] have
begun to focus on naming methods, as these are the smallest units of an aggregated functionality. Such studies
investigate existing method name recommendation techniques or survey professional developers to understand
the impact of naming choices.
MCC/MNR techniques, on the applied models. Approaches were built based on textual similarity and
co-occurrence. Høst and Østvold [26] introduced a debugging approach for method names by inferring naming
rules based on the return type, control flow, and method parameters. Lucia et al. [16] proposed an information
retrieval based approach using LSI [17] to compute the textual similarity to improve program comprehension.

Recently, researchers have proposed learning-based techniques. Allamanis et al. [2, 3] employ deep learning
techniques (i.e., basic and copy convolutional attention models) to recommend method names. Liu et al. [38]
take the same embedding strategy with Paragraph Vector [31] and convolutional neural networks (CNN) [32]
considering additional code nodes at the abstract syntax tree (AST) level to capture code semantic informa-
tion [41]. Code2seq [4] and Code2vec [5] are well-known code embedding techniques that are evaluated with the
method name recommendation task. Code2seq [4] follows the standard encoder-decoder architecture [15] with a
bi-directional LSTM [25] while Code2vec [5] leverages a newly designed path-attention network. Wang et al. [52]
further added the pointer-generator network [47] and introduced Cognac aiming to avoid the out-of-vocabulary
problem. With a similar concept, Nguyen et al. [42] and Li et al. [35] proposed MNire and DeepName, respec-
tively, considering different contexts. These models leverage the RNN-based Seq2seq [10] model with attention
mechanism [9, 39] aiming to capture contextual sentences. Liu et al. [37]’s GTNM is a transformer-based model
that leverages the self-attention mechanism capturing rich semantic dependencies.
MCC/MNR techniques, on the leveraged contexts. To check and recommend the method names, various
related contexts are considered. Most approaches exploit the features from the local context, such as the method
implementation (e.g., tokens of the return type, parameters, control flow graph, data flow graph, AST, and each
identifier in the body) [2–5, 38, 48]. Recently, researchers started to explore a wider range for the context, such as
the enclosing class name [42] and method invocation relations (i.e., caller and callee) [35, 52]. Liu et al. [37] further
extended the context to project-specific information (i.e., in-file methods and cross-file contextual methods) and
documentation of the method (i.e., Javadoc) [37]. A few studies leverage high-level artifacts such as software
requirement documents [16] and semantic profiles of the method implementations [26].

8 CONCLUSION
We investigated existing method name consistency checking and recommendation approaches with a novel

benchmark that contains clear rationales for changing method names. Investigating the recent empirical studies
on developer activities for naming identifiers, we discovered that developers could finalize the method names with
code review comments. Inspired by this phenomenon, we construct a benchmark for method name changes by
collecting andmappingwith the related review comments, which can be a further layer of checking the consistency.
We hold the perspective that our benchmark could serve as a reference for method name consistency checking
and recommendation techniques. This is because the enclosed test oracles are derived from recommendations
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or insights provided by code reviewers within the projects. To validate existing studies on the benchmark, we
explored whether they show consistent performance compared to the previous dataset that does not rely on clear
rationales. Although there was an exceptional case due to the scalability issue with an existing technique, Spot,
we carefully selected our target techniques and designed the experimental setting for a fair comparison. The
results of the existing approaches demonstrate a consistent decrease in our test oracles for most of the metrics
they defined. Overall, this indicates that there still exists room for improvement, especially when they encounter
different scenarios and evaluation protocols. Moreover, we revealed that there exist potentially biased features
discussed in Subsections 6.1 and 6.2 in the evaluation of existing techniques that research should consider to fill
the gap between research and practice. We hope that these actionable insights could be applied to future research
directions.

9 DATA AVAILABILITY
We publicly release a replication package that includes all the code and datasets to reproduce the experiments

of our study at https://figshare.com/s/8cdb4e3208e01991e45c
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