IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 51, NO. 7, JULY 2025

1969

Proactive Debugging of Memory Leakage Bugs in
Single Page Web Applications

Arooba Shahoor ¥, Satbek Abdyldayev

and Dongsun Kim

Abstract—Developing modern web applications often relies on
web-based application frameworks such as React, Vue.js, and
Angular. Although the frameworks accelerate the development of
web applications with several useful and predefined components,
they are inevitably vulnerable to unmanaged memory consump-
tion as the frameworks often produce monolithic web pages,
so-called, Single Page Applications (SPAs), in which no page
refresh actions are made during navigation. Web applications
can be alive for hours and days with behavior loops, in such
cases, even a single memory leak in an SPA can cause perfor-
mance degradation on the client side. However, recent debugging
techniques for web applications focus on memory leak detection,
which requires manual tasks and produces imprecise results,
rather than proactively repairing memory leaks. We propose
LEAKPAIR, a technique to proactively repair memory leaks in
SPAs rather than following a classical and reactive debugging
process. Given the insight that memory leaks are mostly non-
functional bugs and fixing them might not change the behavior of
an application, the technique is designed to proactively generate
patches to fix memory leaks, without leak detection, which is often
heavy and tedious. Thus, the proactive technique can significantly
reduce the time and effort necessary to fix the memory leaks. To
generate effective patches, LEAKPAIR follows the idea of pattern-
based program repair since the automated repair strategy shows
successful results in many recent studies. We extensively evaluate
the technique on 60 open-source projects without using explicit

Received 25 November 2024; revised 23 April 2025; accepted 4 May 2025.
Date of publication 16 May 2025; date of current version 18 July 2025. This
work was supported in part by the National Research Foundation of Korea
(NRF) through Korea Government (MSIT) under Grant RS-2021-NR060080
and Grant 2021R111A3048013, in part by the Institute for Information &
Communications Technology Planning & Evaluation (IITP) through Korea
Government (MSIT) under Grant RS-2024-00437306 and Grant RS-2023-
00222830, and in part by ICT Creative Consilience Program through the In-
stitute of Information & Communications Technology Planning & Evaluation
(IITP), Korea Government (MSIT) under Grant IITP-2025-RS-2020-11201819.
Recommended for acceptance by Y. Xiong. (Corresponding author: Dongsun
Kim.)

Arooba Shahoor is with WithPlaybook, Inc., Seoul 06307, Republic of
Korea (e-mail: arooba.shahoor @ gmail.com).

Satbek Abdyldayev, Hyeongi Hong, and Jooyong Yi are with the De-
partment of Computer Science and Engineering, Ulsan National Institute of
Science and Technology (UNIST), Ulsan 44919, Republic of Korea (e-mail:
satbek @unist.ac.kr; ghdgusrl2000@unist.ac.kr; jooyong @unist.ac.kr).

Dongsun Kim is with the Department of Computer Science and En-
gineering, Korea University, Seoul 02841, Republic of Korea (e-mail:
darkrsw @korea.ac .kr).

Digital Object Identifier 10.1109/TSE.2025.3571192

, Hyeongi Hong

, Jooyong YiW, Member, IEEFE,

, Member, IEEE

leak detection. The patches generated by our technique are also
submitted to the projects as pull requests (PRs). The results
of PRs show that LEAKPAIR can generate effective patches to
reduce memory consumption that are acceptable to developers.
In addition, we execute the test suites given by the projects
after applying the patches, and it turns out that the patches
do not cause any functionality breakage; this might imply that
LEAKPAIR can generate non-intrusive patches for memory leaks.
Furthermore, we compare the performance of LEAKPAIR with
that of GPT-4 as recent studies show that large language models
are successful with program repair tasks. Our results show that
our technique outperforms the language model.

Index Terms—Memory leaks, program repair, non-intrusive
fixes, single page web applications, proactive debugging.

1. INTRODUCTION

PAS (Multiple Page Web Applications) were the most
M popular architectural style until 2010 when building web
applications. In MPAs, each page had to re-fetch and reload
the entire web page for each user request. The traditional MPA
approach incurs a longer page switch time owing to the server
round-trip for each request, and this delay increases with the
size and complexity of the server APIs. The burgeoning usage
of smartphones and mobile apps and the growing demands for
swift and responsive web apps inspired the web development
community to change how web pages were architected and
rendered.

To address the responsiveness of web pages, the concept
of Single Page Applications (SPAs) was introduced as a new
architectural style for web applications; this idea was first im-
plemented by Angular]S, whereby rather than updating the
entire webpage, only the data of the same page was updated [2].
In SPAs, instead of re-fetching and loading entire pages from
the server upon each request, just the data (usually in JSON
format) can be retrieved asynchronously from the server and
inserted dynamically into the application, thereby preventing
page reloads on navigation and data fetch requests [3]. Today,
almost all contemporary social media apps make use of this
architecture [4].

SPAs, however, are vulnerable to memory bloating due to
their architecture in contrast to MPAs. Literally, SPAs maintain
a single web page for a specific application, and all objects re-
side on that single page. Therefore, SPAs inevitably rely on the
garbage collectors of browsers to manage the memory space.

0098-5589 © 2025 IEEE. All rights reserved, including rights for text and data mining, and training of artificial intelligence and similar technologies.
Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Korea University. Downloaded on July 22,2025 at 07:29:43 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-7856-5592
https://orcid.org/0009-0003-9611-7536
https://orcid.org/0009-0000-3372-5583
https://orcid.org/0000-0002-7215-0855
https://orcid.org/0000-0003-0272-6860
mailto:arooba.shahoor@gmail.com
mailto:satbek@unist.ac.kr
mailto:ghdgusrl2000@unist.ac.kr
mailto:jooyong@unist.ac.kr
mailto:darkrsw@korea.ac.kr

1970
15 export default class SidePane extends React.Component<SidePaneProps, Sid:
16 private div = React.createRef<HTMLDivElement>();
17
18 constructor(props: SidePaneProps) {
19 super(props);
20 this.state = {
21 currentPane: this.props.plugins(@],
22 }
23
24 window.addEventListener('hashchange', this.updateStateFromHash);
25 }
26

(a) Event listener memory leak in Rooster JS.
23
24 window.addEventListener('hashchange', this.updateStateFromHash);
25 +
26
27 componentDidMount() {
28 this.updateStateFromHash();
29 }
30
31 | + componentWillUnmount() {
32 | + window. removeEventListener('hashchange', this.updateStateFromHash);
33 | + I
(b) Patch for the memory leak in (a).
Fig. 1. Memory leak in Rooster JS [1] and its corresponding patch.

Each browser’s JavaScript engine implements its garbage col-
lector that is responsible for identifying and reclaiming memory
occupied by objects that are no longer reachable from the pro-
gram. However, there is still a high likelihood of unnecessary
objects lingering around that do not get garbage-collected due
to some unintentional reference, leading to memory leaks. Such
leaks might not be a problem in MPAs, where on each page
navigation, the page refreshes, clearing all the heap. In SPA,
however, such leaks can easily accumulate to several megabytes
as a single page remains alive for several hours or even days.

Because such memory-leaking patterns are not syntactically
or semantically invalid code, browsers run the program without
throwing any errors, and they go unnoticed in functional testing
as well [5]. Consider the syntactically and semantically correct
code scenario in Fig. 1(a) from Microsoft’s roosterjs library
[6]. Based on the React framework, the class adds a listener for
a hashchange event (an event that is fired every time the part
of the URL after the hash changes [7]), to each new instance
of the class, without ever removing the listener, even after the
component unmounts from DOM. This created a memory leak
in the application.

An important point to note in the above scenario is that if
the listener handler was attached to a local element that does
not have references to any other object, it would have been
automatically cleaned up by the garbage collector (GC) once
the class instance was destroyed. In the above case, however,
the event is attached to the root node (window object), which
the GC never cleans up, even after the instance is destroyed.
A simple fix to this memory leak was applied by the project
developers (Fig. 1(b)) by explicitly removing the event in the
component destructor function.

There have been a limited number of studies [8], [9], [10],
[11], [12] on the problem of memory leak detection in the
web domain. These studies focus on automating the detection

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 51, NO. 7, JULY 2025

of memory leaks, the most relevant and notable of which is
BLeak [12], which is an automated memory leak detection tool
for client-side web applications. BLeak requires a scenario file
written by the users to run the app in a loop in a headless
browser and takes around 10 minutes to execute. The details of
other studies will be presented later in the Related Work section.

We present LEAKPAIR, an approach to generating patches
that repair memory leaks in SPAs. Unlike typical automated
program repair approaches, LEAKPAIR can be applied without
requiring bug locations or relying on leak-detection techniques.
It automatically detects code snippets that can potentially
cause memory leaks and fixes them using non-intrusive (i.e.,
functionality-preserving) transformation rules we mined from
existing code.

While test-driven program repair [13], [14], [15], [16] (also
known as generate-and-validate repair [17]) begins to work
once a bug is detected by test cases, proactive program re-
pair first applies patches to potential buggy locations. Then, a
proactive approach measures a difference in properties (such
as memory consumption and execution time) before and after
applying the patches. The difference is provided as evidence of
repair instead of validating patches by test cases, which is done
in test-driven program repair after generating patches. Thus,
proactive repair is a special kind of program repair approach.

In summary, this paper contributes the following:

e Initial Study Contributions: In our earlier work pre-
sented at ASE 2023 [18], we introduced LEAKPAIR, the
first approach that fixes memory leaks in SPAs. In that
work, we showed that for this targeted problem, a simple
pattern-based approach can be effective, as evidenced by
the developers’ acceptance of the patches generated by
LEAKPAIR. Conceptually, we introduced the idea of proac-
tive repair, which unlike typical automated program repair
approaches, performs repairs proactively before a problem
occurs.

o Initial Study Technique: The study follows a three-
step process; we first mine the common memory leak
patterns in applications developed using Angular [19] and
React [20] (two of the most widely used SPA frame-
works), and the corresponding fix patterns from citHub
and stackoverflow . We then develop a CLI tool that parses
the given project, traverses the AST (Abstract Syntax Tree)
to detect the leak patterns, and fixes them with the cor-
responding fix patterns. Finally, the tool is evaluated on
subjects with fixed memory leaks (to compare LEAKPAIR’s
fixes with those of the developers), as well as on new sub-
jects. The tool successfully replicates the fixes for the 19
known leaks and repairs 18 previously unknown leaks, the
patches for which are submitted as PRs to the developers.

o Extended Study Contribution: Our focus in this ex-
tended study is on improving the generalizability of our
approach. To achieve this purpose, we extend the appli-
cation of LEAKPAIR to Vue (another widely used SPA
framework). As a result, our technique is extensively eval-
uated on 60 open-source SPAs, each based on either React,
Angular, or Vue. In addition, we increase the iterations for

Authorized licensed use limited to: Korea University. Downloaded on July 22,2025 at 07:29:43 UTC from IEEE Xplore. Restrictions apply.

SHAHOOR et al.: PROACTIVE DEBUGGING OF MEMORY LEAKAGE BUGS IN SINGLE PAGE WEB APPLICATIONS

the memory footprint measurement from 10 (original) to
25 rounds for each subject to ensure the soundness of the
evaluation results.

In addition to the extensive evaluation, we compare
LEAKPAIR with the results generated by GPT-4 [21] as
recent LLMs perform very well for program repair tasks
[22]. This study not only explores the effectiveness of
GPT-4 in fixing memory leaks of SPAs, but also compares
the qualitative aspects of patches generated by LEAKPAIR
and GPT-4. The results show the limitation of LLMs when
addressing the memory leak repair task. To the best of our
knowledge, this is the first study to compare the effective-
ness of GPT in fixing memory leaks.

We also present a brief case study of the SoundCloud
memory leak, underscoring the severity and prevalence
of memory leaks. Furthermore, to clarify why the current
state-of-the-art in memory leak diagnosis falls short, we
have incorporated a comprehensive section that delves
into the heap snapshot analysis technique. This segment
provides a detailed examination of the “3-snapshot tech-
nique”, and demonstrates its limitations, substantiating the
necessity for advancements in this area.

The paper also revisits the results of the live study on
pull requests, aiming to identify potential factors influenc-
ing the approval or non-approval of automatically gener-
ated patch submissions. In addition, we investigate the case
of intrusive memory leak repair, particularly the case of
automated repair of memory leaks caused by global col-
lections (arrays, sets, etc.), which can break functionality.
We explore how and why such collections cause memory
leaks, the rationale behind our tool not being able to repair
them non-intrusively, and present potential solutions to
address these edge cases.

Lastly, this paper incorporates an expanded discussion
of related works, offering a more holistic view of the
present landscape of automated program repair, memory
leak debugging, and proactive patch generation.

o Extended Study Technique: Following the approach in
the prior study, we curate three memory leak (and fix)
patterns for Vue (FP5a, FP5b, FP5b in Section III-C).
For this purpose, 11 Vue subjects with known leaks and
12 subjects where LEAKPAIR repaired unknown leaks are
added. The patches for the previously unknown leaks are
submitted as pull requests, as was done in the original
study. The tools and techniques for measuring memory
footprints remain unchanged.

For exploring the case of intrusive patches and gauging
the impact of the intrusion, we follow the evaluation pro-
cess of our first study; we automate the patch generation
based on the curated fix pattern and run the SPA containing
the global-collection leak along with the provided test
suite, both before and after the patch application.

The remainder of this paper is organized as follows. After
illustrating the background and motivation of this study in
Section II, we propose our approach, LEAKPAIR, in Section III.
Section IV empirically evaluates our approach and reports on
the experiment results. Section VI discusses the comparison of

1971

Client Server
/7 N 4 N
User Interface HTTP Request for initial Presentation Layer W
page load New —
Page 1 HTML R<§templates>>+ ditS:){N_)
= N (J
Page2 | X HTML JSON I
- (e Lt
—= Service Interface
Page 3 | I I
= HTTP Request for user
_ query [Business Logic J
Page switching with
reload Database
\ ¢ J N "
o ,/ N /
Fig. 2. Overview of multi-page application (MPA) architecture [3], [4].

LEAKPAIR against the state-of-the-art program repair technique,
and intrusive patches for memory leaks. After surveying the
related work in Section VII, we conclude with directions for
future research in Section VIII.

II. BACKGROUND AND MOTIVATION
A. Single Page Web Applications (SPAs)

This section compares Multiple Page Applications (MPAs)
and Single Page Applications (SPAs) and discusses why SPAs
are vulnerable to memory leaks.

In MPAs, the actions taken by the user on the webpage (such
as navigation, form submissions etc.) trigger HTTP requests to
the server as shown in Fig. 2. The server retrieves data from
data sources, merges them with server-side templates, and then
sends the fully rendered HTML (page) to the client for display.
This results in a page refresh for each such user interaction. In
addition, the user session and data are persisted on the server;
any time the session state or data need to fetched or updated,
the server has to be queried, and the client (and the user) waits
for the update to be completed on the server, resulting in a poor
app responsiveness [3].

In SPAs (Fig. 3), while there may be multiple JavaScript,
CSS, and other resource files, there is typically a single HTML
file that serves as the initial entry point for the applica-
tion. Within this single HTML file, templates are defined by
SPA frameworks (Angular, Vue, etc.). These templates provide
placeholders where data can be dynamically inserted or inter-
polated. Now, instead of the server generating fully-rendered
HTML pages, it only serves data (often in JSON format)
through APIs or other endpoints. The client then retrieves this
data and dynamically merges it with the templates to generate
the final ‘views’. Each such dynamically generated view repre-
sents a distinct ‘page’ the user interacts with; the difference lies
in the smooth transitioning of these pages, as there are no page
reloads during the process. The logic of merging the data with
the right template, routing to the right view, and maintaining
the life cycle of a single view are all defined using the SPA
frameworks [4].

In addition, an SPA caches all the received data from the
server so that the user is still able to interact with the app in

Authorized licensed use limited to: Korea University. Downloaded on July 22,2025 at 07:29:43 UTC from IEEE Xplore. Restrictions apply.

1972

Client Server
e N
(~.) HTTP Request [~ A
[UserInterface | SPAFramework (Angular,React, for initial page S
Vue.) load ()
View 1 ‘ Service Interface
= Single -html file|_ JSON L J
= A data {..} HTML

View 2 VT
= ‘ Business Logic

ST\ JSON
1 -«\<templates 2>) data {...}

/e R
_H <templates 3>)
N\ ~/

AJAX Request - T -

View 3 | T for user query
= JSON

data {..}

‘ Database
View switching No reload required

JSON |
_ withoutreload)\) data {...} q

/

Fig. 3. Overview of the Single-Page Application (SPA) architecture.

case of poor connection or connection loss, and any new data
can be synced once the connection improves/restores [3].

B. Garbage Collection and Memory Leaks in SPAs

In MPAs, memory leakage may not be a critical issue since
the web pages are switched frequently and, as the browser
switches to a new page, the memory reserved by the previous
page is reclaimed by the garbage collector. Most modern web
apps, however, are single-page apps that update the content
without switching the web page. This means that a single
web page can be active for several hours or even days [10].
When memory leakage in such applications accumulates over
time, it not only slows the program execution and causes data
processing latency but may also lead to program crashes and
incompatibility with other applications.

Several existing popular websites (including the libraries they
use) suffer from memory leakage that adversely affects the
responsiveness of the browser. In its blog post [23], SoundCloud
discusses its web application built with React and Redux that
suffered a memory leak (Redux is a state management library
that stores and organises data in a central location called the
‘store’ [24]). The leak stemmed from the Redux store contin-
uously growing with each request, as objects accumulated in
the store without removal, even when no longer needed. While
React typically handles garbage collection when components
unmount, Redux maintains references to all data, preventing its
release. The leak was fixed by implementing a custom Garbage
Collector on top of the Redux store, that ensures that only the
necessary entities required by mounted components remain in
the store.

Vilk and Berger [12] reported that more than 99 percent
of Google Chrome crashes on low-end Android phones are
the result of memory issues. They also identified more than
50 memory leaks in popular applications, including JavaScript
frameworks, and Google applications. Another leak detection
study [25] revealed public-facing SPAs leaking up to 186 MB
per interaction.

As will be demonstrated in the next section, since such leaks
are hard to discover and diagnose, developers rather choose
to invest their time and effort in addressing more ‘apparent’
application issues. Finally, oftentimes developers may wrongly
attribute the lagging app behavior to the user’s browser, internet
connection, or even their systems.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 51, NO. 7, JULY 2025

Fig. 4. Memory leak detection in fiit website using heap snapshots.

C. Automated Efforts and State of the Art

Unlike manually managed languages (such as C and C++),
the JavaScript standard (ECMAScript) does not provide any
interface for developers to monitor the memory usage of the app
or manipulate the Garbage Collector, which makes diagnosing
the leaking memory a cumbersome task for the developers [26].
Consider testimonials [27], [28], [29] as well as the following
comments from SPA developers on Github and StackOverflow
regarding the obscure and evasive nature of memory leaks and
their detection:

I looked at the Chrome Dev Tools and taking heap snapshots to see if there is
an increase in memory and it is apparent that there is when I see the memory
shoot from 123MB to 200+MB after a few actions within the application. Now
this is a good tool for determining whether there is a possible memory leak
or not, but it’s absolutely hard to read and understand, which doesn’t help
me determine where the issues lie [30].

This issue has been around for nearly 3 years now. (I usually don’t like to
start a message this way unless I tried something to fix the issue myself. . .
Which I did here! and failed miserably as it seem quite complex to get to the
bottom of it. . .[31].

In order to address memory leak issues, the root cause needs
to be diagnosed first. Although there have been automated
techniques and approaches to detect memory leaks in web ap-
plications [8], [9], [10], [11], [12], these techniques have several
limitations, including (1) dependency on the browser’s heap
snapshots, (2) non-trivial effort required for writing a test-driver
script and (3) imprecision. The state-of-the-art for memory
leak detection in SPAs (and websites in general), hence, is the
manual analysis of heap snapshots via the browser dev tools.

The three-snapshot technique was first introduced by Loreena
Lee and the Gmail team in 2012, to address leaking memory
issues in Gmail [32]. The workflow is as follows:

First, capture the heap snapshot at the start of the applica-
tion load, then, interact with the application, take the second
snapshot, followed by the same user actions as taken before,
and finally take the last snapshot. Then, in the Summary view
of heap snapshot 3, perform a comparison between snapshots
1 and 2 to filter the objects allocated between the 2 snapshots.
Finally, use the Retainer view to see what is referencing these
objects in order to find the leaking object source.

Fig. 4 is a screenshot from one of the web posts of fiit (UK’s
#1 rated fitness app) [33], where the developer shared their
experience of debugging memory leaks on the official website,
using this technique.

Authorized licensed use limited to: Korea University. Downloaded on July 22,2025 at 07:29:43 UTC from IEEE Xplore. Restrictions apply.

SHAHOOR et al.: PROACTIVE DEBUGGING OF MEMORY LEAKAGE BUGS IN SINGLE PAGE WEB APPLICATIONS

This kind of diagnosis, however, is not always accurate as
the actual leak may appear low on the heap snapshot list and
may even have a small retained size, making it an unlikely
target for investigation. Furthermore, reading through the heap
snapshot content can be highly time-consuming without gaining
any valuable information. The JS engine for browsers organizes
the memory consumed by the web app in a graph of nodes
and edges [34]. The heap snapshot is a flattened version of
this graph, in a JSON format, which, in addition to the actual
objects of the web application, includes meta-data about the
format of the memory graph and the shape and size of every
object contained in the memory graph data (including internal
JS engine objects). Moreover, unnamed objects are frequent,
as JavaScript is dynamically typed, and web page source code
is minified and obfuscated to reduce the size of the JavaScript
code. This leaves too much noise for the user to be able to drill
down to the actual unreachable objects that are leaking memory.

D. Non-Intrusive Repair Without Replicating
Actual Memory Leaks

Non-intrusive patches: Our intuition here is to apply non-
intrusive patches [35] to all potential memory leaks. If the
patches are non-intrusive (i.e., behavior-preserving), it is not
necessary to detect memory leaks before repairing them. As
the patches do not change the behavior of a target program, it
is better to repair as many (potential) leaks as possible, which
eventually improves the maintenance quality. Such patches are
unlikely to introduce new functional bugs and are often easy
to understand. The tradeoff for developers is obvious: applying
these patches is beneficial as they are simple and non-intrusive.
Avoiding the leak detection step is a huge advantage, as this step
is tedious and time-consuming due to the dynamic analysis in-
volved. A similar approach was used in [35] to fix performance
bugs. However, to the best of our knowledge, ours is the first
work to proactively repair memory leaks directly in the source
code of web applications.

Pattern-based program repair: To fix the memory leak issues,
we employ pattern-based program repair. While we considered
other types of program repair techniques as well, they were
found to be less suitable for fixing memory leaks proactively.
Most existing APR techniques (e.g. [13], [15], [36]) are test-
driven, meaning that they require a test suite to drive the search
for a patch, while we do not assume the existence of such a
test suite. Note that recent neural program repair techniques
(e.g. [37], [38]) also require a test suite to validate the gener-
ated patches. The issue of the trustworthiness of the generated
patches is also a concern for such techniques.

In comparison, we curate fix patterns that are likely to be non-
intrusive and apply them to the potential memory-leak locations
of the program. Our pattern-based program repair can also be
viewed as a static-analysis-based repair similar to FOOTPATCH
[39] and SAVER [40], tools fixing the memory leaks of C/Java'

'SAVER cannot handle Java programs.

1973

programs — we statically detect potential memory-leak loca-
tions and fix them. These techniques typically involve substan-
tial efforts by both tool developers and users to enable static
analysis. For example, SAVER requires the semantic models
for libraries to perform static analysis and fixing. By contrast,
our pattern-based approach does not involve any heavyweight
analysis and can be readily applied to any SPA program. As will
be shown in Section V-B, the patches generated from LEAKPAIR
are often accepted by real-world developers, demonstrating the
practical value of our approach.

III. LEAKPAIR
A. Overview

Our approach, LEAKPAIR, consists of two steps: (1) fix pat-
tern mining, and (2) memory leak repair using the fix patterns.
In the first step, we manually examine program patches or pull
requests addressing memory leaks, together with commit mes-
sages, code reviews available in open-source projects, and Q&A
posts. After identifying common and recurring fix patterns from
the patches, we implement an edit script for each pattern, which
can generate non-intrusive patches. In the second step, we scan
a target project (i.e., SPAs) to apply our fix patterns. Each
fix pattern can naturally specify which data or object types
are associated with it. A corresponding edit script can then be
applied accordingly. Each pattern changes all locations, where
applicable, in the target project.

B. Mining Fix Patterns for SPA Memory Leaks

Since our goal is to identify recurring common patterns of
memory leaks and their corresponding patches in SPAs, we
first collect the most common leaks available publicly, by using
specific keyword search on citmub and stackoverflow . Then,
we carefully extract common patterns of leaks and their corre-
sponding patches. Obviously, this is a manual task and is time-
consuming. Nonetheless, numerous previous studies [14], [15],
[16], [35], [41], [42], [43] have demonstrated that this strategy
is effective and useful, as we can reuse the fix patterns many
times once they have been identified.

Two authors were part of this manual analysis. We use the fol-
lowing search process to collect issues and discussions relevant
to memory leaks: (1) For Stack Overflow, we search through
1,000 posts whose titles, comments, or discussions contain a
combination of two or more of the following keywords: ‘leak’,
‘memory usage’, ‘memory leak’, ‘memory’ and ‘React’, ‘Vue’,
‘Angular’ (depending on the framework). (2) For GitHub, we
search through 1,000 commits, PRs, issues, and discussions
containing any of the above keywords as labels.

After investigating the search results, we collect leak pat-
terns as per the following procedures: (1) We select common
memory leaks reported at least five times across itHub.com
and stackoverflow.com , (2) the leaks should be acknowledged
as valid, by at least two developers, (3) we further narrow down
the leaks, which can be reproduced and tested locally, and (5)
five leak patterns were selected, which are applicable to SPAs.

Authorized licensed use limited to: Korea University. Downloaded on July 22,2025 at 07:29:43 UTC from IEEE Xplore. Restrictions apply.

1974

For each leak pattern identified in the previous step, we
select fix patterns by looking at their original answers (for
StackOverflow) or discussions (for GitHub). For each leak type,
we extract, as fix patterns, the common fix suggestions in Stack
Overflow that are accepted as the answer in at least two separate
posts. From the leak patterns found in GitHub commits, we
select the patches that were approved and merged in at least
two separate projects. Among the above-selected fix patterns,
we further filter the patterns based on their applicability to SPA
projects.

All identified fix patterns are supported by examining actual
memory footprint changes. We compare the memory footprints
of revisions before and atter applying the patches. If there
were no differences between before and after memory foot-
prints, we discard the fix patterns. We examine the memory
footprints of patches applied to SPAs using MemLab [44].

C. Fix Patterns

As already discussed in Section II-B, the general root cause
of memory leaks in SPA is an unused object that lingers in
memory due to some unwanted reference that was not explicitly
cleared by the developers. Hence, the fix for such leaks gener-
ally involves cleaning up any unwanted references to objects
that have the potential to be retained in memory. In the SPA
domain, this needs to be done when a component unmounts
from the DOM (in the component destructor).

Following the procedure in Section III-B, we identified 7

fix patterns for generating non-intrusive patches for repairing
memory leaks in SPAs:
FP1. Unreleased Subscription. In reactive JavaScript (RxJS),
an observable is a lazily evaluated computation that can syn-
chronously or asynchronously return zero to (potentially) infi-
nite values from the time it is invoked (subscribed) [45]. This
indicates that they can keep outputting values even after the
component is destroyed/unmounted, unless we explicitly tell
them to stop. This means each time the component containing
that subscription is rendered, a new observable is created in ad-
dition to the old one, because we never explicitly unsubscribed
from the previous one. The stale data keeps getting piled up,
never getting garbage collected, creating a memory leak.

In practice, developers may not always be able to figure
out whether the observable they are subscribing to, is finite or
infinite, and in these cases, it is best to explicitly unsubscribe
when the component unmounts/destroys, just to be safe. This
ensures that the Subscription is closed (if it was not already) and
that proper cleanup is carried out. Nothing else will happen if
it was previously closed.

Fix: The takeuntil() operator allows a notified observable
to emit values until a value is emitted from another Observable
[46], i.e., the takeuntil() operator completes the stream it
is attached to, when an Observable provided to itself, emits a
value. Thus, if we provide another observer oz (see pseudo-
code below) as input to the takeuntil() operator, and in the
destructor we make oz emit a value (using the next() and

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 51, NO. 7, JULY 2025

complete () methods), that will clear the subscription and thus
prevent the memory leak”.

FP1. Unreleased Subscription

// O: Observer
// D: Destructor method

1
2
3
4 - Oj.subscribe(() => {...})

5 + Ojp.pipe(takeUntil (O2)) .subscribe(() => {...})
6

7

8

+ DO |
02.next ()
02.complete ()

9 +
10 +
11 + }

13 // Example
u

15 + private ngUnsub = new Subject ();

16 N

17 this.userService.getLocal ()

18 + .pipe (takeUntil (this.ngUnsub))

19 .subscribe (usr => {this.user = usr;});

21 + ngOnDestroy(): wvoid {
this.ngUnsub.next () ;
this.ngUnsub.complete () ;

+

23+
o}
}

In the above example, the method is
called on the class field userService, which returns an
observable. The observable is then subscribed to, and
upon receiving results, the returned user object (usr) is
assigned to the user instance variable. The fix involves

getLocal

the insertion of pipe(takeUntil (this.ngUnsub)) Which
ensures that subscriptions are cleaned up properly.
By wusing takeuntil(this.ngunsub) , the subscription to

this.userService.getLocal () is automatically unsubscribed
(i.e., completed) when this.ngunsub emits.

FP2. Unremoved Event Listener. The notion of retaining
paths is critical for finding the root cause of a memory leak.
A retaining path is a chain of objects that prevents the garbage
collection of the leaking object. The chain starts at a root object,
such as the global object of the main window. The chain ends
at the leaking object.

Active event listeners will prevent all variables captured in
their scope from being garbage-collected. Once added, the event
listener will remain in effect until (1) it is explicitly removed
or (2) the associated DOM ele-

Wlth removeEventListener ()

ment is removed.

Fix: Unregistering the event listener once the SPA compo-

nent unmounts/destroys, by creating a reference pointing to the

event handler = (see pseudo-code below) and passing it to
removeEventListener () method?.

2https://github.com/blackbaud/skyux/pull/376/files
3https://github.com/microsoft/roosterjs/pull/921/files

Authorized licensed use limited to: Korea University. Downloaded on July 22,2025 at 07:29:43 UTC from IEEE Xplore. Restrictions apply.

https://github.com/blackbaud/skyux/pull/376/files
https://github.com/microsoft/roosterjs/pull/921/files

SHAHOOR et al.: PROACTIVE DEBUGGING OF MEMORY LEAKAGE BUGS IN SINGLE PAGE WEB APPLICATIONS

FP2. Unremoved Event Listener

// T:
// Y:
// H:
// D:

Event target

Event type

Event handler method
Destructor method

T .addEventListener (Y, H)

+ DO {

+ T .removeEventListener (Y, H)
+}

// Example

{

document .body.addEventListener (’ touchend’,
this.handleMouseUp) ;

+ componentWillUnmount () {
+ document .body.removeEventListener (’touchend’,
this.handleMouseMove) ;

The example registers a listener on the touchend event pro-
vided by the mobile browser API. The touchend event is trig-
gered when a finger or touch point is lifted off the touch surface
on devices like smartphones and tablets. The example code
assigns a handler function (handleMouseUp) that will be called
whenever this event occurs.

A memory leak can occur if the developer does not unregister
the event listener when the user leaves the page view. The fix
is to remove the event listener in the componentWillUnmount
function, which acts like a destructor in the React framework.
This function is called just before the component (view) is
unmounted from the DOM.

FP3a. Uncleared Timeout Event. The setTimeout() method
executes a function or specified piece of code once the specified
timeout value is reached. When any object is tied to a timer call-
back, it will not be released until the timeout happens. In certain
scenarios, the program’s logic requires the timer to reset itself;
this causes it to run forever, thereby retaining the references of
all the enclosing objects and disallowing the garbage collector
to remove the memory. Even if the developers explicitly clear
the setrimeout() in code conditionally, there is no guarantee
it also caters for situations where the user navigates away after
the setTimeout () is triggered but before the specified timeout
value is reached.

Fix: Because each has its own memory
reference, we must clear each one individually, using the

setTimeout ()

clearTimeout () method, passing it the ID returned from
the setTimeout() call (which uniquely identifies each
setTimeout () reference). The patch involves clearing the

timeout method just before the component is about to unmount
from DOM i.e in the component destructor®.

“https://github.com/MTES-MCT/monitorfish/pull/953/commits/
1dc01c0d82261bf05277366d954fa5d912632091

1975

FP3a. Uncleared Timeout Event

// I: Unique Timer ID
// D: Destructor method

> (o]
O => {...}

- setTimeOut (() =
+ I = setTimeOut (

+ D() {

4 clearTimeOut ([)

+}

// Example

{

+ caretPositionTimeout: number;

- setTimeout (() => { setCaretPosition(el, caretPos); },
1000) ;

+ this.caretPositionTimeout = setTimeout (() => {
setCaretPosition(el, caretPos); }, 1000);

componentWillUnmount () {
clearTimeout (this.caretPositionTimeout) ;

—~+ + +

In the given example setTimeout is used to execute the
custom setcaretPosition function after 1000 milliseconds (1
second). However, if the component is unmounted before the
timeout completes, the callback may still try to execute, poten-
tially leading to a memory leak.

The fix involves storing the timeout ID returned by set-
Timeout in a class property (this.caretPositionTimeout). This
allows us to reference this specific timeout later. Then, just
before the component unmounts (in the componentwillunmount
method), the clearTimeout function is called with the stored
timeout ID (this.caretPositionTimeout). This cancels the
timeout if it is still pending, preventing the callback from exe-
cuting after the component has unmounted.

FP3b. Uncleared Interval Event. = The setInterval ()
method repeatedly calls a function or executes a code snippet,
with a fixed time delay between each call. Even after the
component is unmounted from the DOM, the setInterval timer
will keep on ticking (unless we explicitly clear the interval
in the code), trying to update the state of a component that’s
effectively gone, thereby causing memory leakage [47]. Even
if the developers clear these interval functions in the code on
some condition, there is no guarantee that the clearing method
will get a chance to execute before the user navigates away.
Fix: Each interval has a separate reference in memory, so we
need to clear each individually, using the returned ID from
the setinterval() method call, which uniquely identifies the
interval method call. The patch involves clearing the timer
just before the component is about to be destroyed i.e., in the
component destructor”.

Shttps://github.com/MTES-MCT/monitorfish/pull/953/files

Authorized licensed use limited to: Korea University. Downloaded on July 22,2025 at 07:29:43 UTC from IEEE Xplore. Restrictions apply.

https://github.com/MTES-MCT/monitorfish/pull/953/commits/1dc01c0d82261bf05277366d954fa5d912632091
https://github.com/MTES-MCT/monitorfish/pull/953/commits/1dc01c0d82261bf05277366d954fa5d912632091
https://github.com/MTES-MCT/monitorfish/pull/953/files

1976

FP3b. Uncleared Interval Event

// I: Unique setInterval event ID
// D: Destructor method

> (o))
O =>{...}

- setInterval (() =
+ I = setInterval (

+ D() {
4 clearInterval (I)
+}
// Example
{
useEffect (() => {
- setInterval(() => { setCount ((prevCount) => {
return prevCount - 1});
}, 1000);
+ comst intervalld = setInterval(() => {
setCount ((prevCount) => { return prevCount - 1});
}, 1000);

+ return ()

bo 1D 5

=> clearInterval (intervalId)

In the example snippet, setlnterval is used within a useEffect
hook (a React utility) to decrement a counter every second.
However, this interval is never cleared, meaning the interval
will continue to run even after the component is unmounted,
leading to a memory leak.

The fix is similar to FP3a: The interval ID returned by
setInterval is stored in a constant (intervalzd). This allows
us to reference this specific interval later. Now in React,
the useeffect hook returns a cleanup function that is exe-
cuted when the component is unmounted or before the effect
is re-executed. Inside this cleanup function, clearInterval
is called with the stored interval ID (intervalld). This stops
the interval from continuing to run after the component is
unmounted.

FP4. Uncancelled Animation Frame Requests. The
Web API method helps determine
the count of frames per second to allocate an animation,
and execute the provided callback to perform that animation,
before the actual screen loads [48]. Since it is used for creating
animations on web pages, these are usually called recursively,
which again leads to the risk of their execution post component
destruction, retaining all objects in its callback function, even
after they are no longer needed.

Fix: Similar to timers, each requestanimationFrame () call also
returns an ID unique to that specific request, that we can use
to ensure the request is cancelled just before the component
destroys®.

requestAnimationFrame ()

Shttps://github.com/carbon-design-system/carbon-addons-iot-react/pull/
2119/files

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 51, NO. 7, JULY 2025

FP4. Uncancelled Animation Frame Request

// I: Unique requestAnimationFrame ID
// D: Destructor method

- requestAnimationFrame (() => {...H

+ I = requestAnimationFrame(() => {...})
+ D() {

+ cancelAnimationFrame ([)

+}

// Example

- requestAnimationFrame (this.animateSecondaryWaves) ;
+ this.frameld =
requestAnimationFrame (this.animateSecondaryWaves) ;

+ componentWillUnmount () {
+ cancelAnimationFrame (this.frameld) ;
+}

In the original

requestAnimationFrame

version of the example code,

is used to schedule the custom
animateSecondarywaves method to be called before the next
repaint. However, there is no reference stored to this request,
and it is never canceled. This can lead to a memory leak if
the animation continues to request new frames even after the
component is unmounted.

To fix this, the request ID returned by requestanimationFrame
is stored in a class property (this. framezd). This allows the re-
quest to be referenced later. The componentwillunmount lifecy-
cle method is called just before the component is removed from
the DOM. Inside this method, cancelanimationrrame 1S called
with the stored request ID (this.framezd). This cancels the
scheduled animation frame request, ensuring that the animation
does not continue to request new frames after the component is
unmounted.

FP5a. Unremoved Component Instance Event Listeners.
When the $on method is applied to a Vue component using
78 it means the component is
listening for an event and will execute the provided callback
function when this event is emitted. However when a
component listens for events using this.$on() , it’s important
to clean up those listeners when the component is destroyed to
prevent memory leaks.

Fix: Similar to previous fixes, the fix here is to remove the
instance listener using the $otff() method just before the com-
ponent is destroyed’.

this.$on (event, callback)

7https://github.com/lan-ui/lan-ui/blob/a28£545¢75dd8f444f7fdded965a27df
9ac8dbe3/src/components/checkbox-group/checkbox-group.vue#L83

8hittps://github.com/ElemeFE/element/blob/
290e68eabaabc56b7d83182b650e3bedf77ff1b0/packages/menu/src/menu.
vue#L.318

9https://github.com/nasa/openmct/pull/7070/commits/
053f1a846¢22427200e99a72fal3fac88e9a3 1 ac#diff-
501283c5c1b662d1c7a9e2215ca097c059991e1a0fe1d2736451be7d44c62747

Authorized licensed use limited to: Korea University. Downloaded on July 22,2025 at 07:29:43 UTC from IEEE Xplore. Restrictions apply.

https://github.com/carbon-design-system/carbon-addons-iot-react/pull/2119/files
https://github.com/carbon-design-system/carbon-addons-iot-react/pull/2119/files
https://github.com/lan-ui/lan-ui/blob/a28f545e75dd8f444f7fdded965a27df9ac8dbe3/src/components/checkbox-group/checkbox-group.vue#L83
https://github.com/lan-ui/lan-ui/blob/a28f545e75dd8f444f7fdded965a27df9ac8dbe3/src/components/checkbox-group/checkbox-group.vue#L83
https://github.com/ElemeFE/element/blob/290e68ea6aa6c56b7d83182b650e3be4f77ff1b0/packages/menu/src/menu.vue#L318
https://github.com/ElemeFE/element/blob/290e68ea6aa6c56b7d83182b650e3be4f77ff1b0/packages/menu/src/menu.vue#L318
https://github.com/ElemeFE/element/blob/290e68ea6aa6c56b7d83182b650e3be4f77ff1b0/packages/menu/src/menu.vue#L318
https://github.com/nasa/openmct/pull/7070/commits/053f1a846c22427200e99a72fa13fac88e9a31ae#diff-501283c5c1b662d1c7a9e2215ca097c059991e1a0fe1d2736451be7d44c62747
https://github.com/nasa/openmct/pull/7070/commits/053f1a846c22427200e99a72fa13fac88e9a31ae#diff-501283c5c1b662d1c7a9e2215ca097c059991e1a0fe1d2736451be7d44c62747
https://github.com/nasa/openmct/pull/7070/commits/053f1a846c22427200e99a72fa13fac88e9a31ae#diff-501283c5c1b662d1c7a9e2215ca097c059991e1a0fe1d2736451be7d44c62747

SHAHOOR et al.: PROACTIVE DEBUGGING OF MEMORY LEAKAGE BUGS IN SINGLE PAGE WEB APPLICATIONS

FP5a. Unremoved Component Instance Event Listener

// E: Event
// C: Callback
// D: Destructor method

{:l:xzi.s.son(E, C);

+ D() {
+ this.$off (E, C);
+}
// Example
{
r;@\:mted() {

this.Son (’/ submenu-click’, this.handleSubmenuClick) ;

}

+ beforeUnmount () {
+ this.Soff (' submenu-click’, this.handleSubmenuClick) ;
+ }
}
In Vue, event listeners are managed within the
component instance (this). In the original version of

the example code, an event listener is added for the

submenu-click event in the lifecycle hook of
Vue (this.$on (’ submenu-click’, this.handleSubmenuClick))
This means that when the component is mounted, it starts
listening for submenu-click events and executes the custom
handlesubmenuclick method whenever the event is triggered.

Without proper cleanup, the event listener remains active
even after the component is unmounted. This can lead to a mem-
ory leak because the event listener continues to hold a reference
to the unmounted component, preventing it from being garbage
collected.

The lifecycle hook in Vue is called
right before the component is unmounted from the DOM.
The memory leak is fixed by calling this.$off with the
event name (submenu-click) and the handler method,
(this.handlesubmenuclick) in this hook, ensuring that the
event listener is properly cleaned up.

FP5b. Unremoved Root Instance Event Listener. In Vue.js,
this.$root refers to the root Vue instance, the top-level Vue
component instance which is the parent of all other components.
this.$root.$on (event, callback) iSa method used to listen for
custom events emitted from the root Vue instance!%!!. Similar
to the previous case, it will execute the provided callback func-
tion when the event is emitted. However, just like the regular
Vue component, the root component also needs to clean up the
listeners when it is destroyed, to prevent memory leaks.

Fix: The fix is similar to FP5a, i.e to remove the listener
using the $off() method just before the root component is
destroyed!?.

mounted

beforeUnmount

10https://github.com/lan-ui/lan-ui/blob/a28£545e75dd8f444f7fdded965a27df
9ac8dbe3/src/components/checkbox-group/checkbox-group.vue#L.83

https://github.com/bootstrap-vue/bootstrap-vue/blob/
5173dd19t6f46dc9d125¢d7233fb59ccd2ef9296/docs/components/quick-
links.vue#L55

2https://github.com/Ocelot-Social-Community/Ocelot- Social/commit/
54ca9a6e0c9ebf7a39516622cb95f86¢793176f5

1977

FP5b. Unremoved Root Instance Event Listener

// E: Event
// C: Callback
// D: Destructor method

this.$root.son(E, C);

+ D() {

+ this.S$root.$off (E, C);
+ }

// Example

{

mounted () {
this.Sroot.Son (' refetchPostComments’,
this.refetchPostComments ()
3]
b

beforeUnmount ()
this.Sroot.S$off (' refetchPostComments’)

0 => {

—+ o+ +

In the example code, this.$root.$on (' refetchPostComments’,

..); registers an event listener for the custom event
‘refetchPostComments’ on the root Vue instance ($root).
The arrow function ()
serves as the callback function that will be executed when
‘refetchPostComments’ event is emitted, during the mounted ()
lifecycle hook of the Vue component.

Again, if the event listener is not properly removed when the
component is destroyed or unmounted, it can lead to memory
leaks because JavaScript engine will keep holding references
to the callback function (() => this.refetchPostComments ())
and associated data structures in memory.

To prevent this, in the beforeunmount () hook,

this.root.off (‘refetchPostComments’) 1S called to remove
the event listener for ‘refetchPostComments’ event from the
root Vue instance ($root). This ensures that the callback
function (() and associated
resources are properly cleaned up when the component is
about to be destroyed.

FP5c. Unremoved Event Bus Listener. In Vue.js, an event
bus is a way to communicate and pass data between components
that are not directly related or have a parent-child relationship.
Event bus is created as a new Vue instance (new vue ()). Com-
ponents can then emit events on the event bus, which can be
listened to by any other component that is also using the same
event bus [49]. However if a component subscribes to an event
on the event bus but fails to unsubscribe when the component is
destroyed, the event listener will continue to exist in memory,
even though the component itself is no longer used. This can
lead to a build-up of event listeners over time and eventually
cause memory leaks.

Fix: The fix is similar to the above 2 cases, where the event
needs to be removed from the event bus using the $of£ ()
method just before the root component is destroyed'>.

=> this.refetchPostComments ()

=> this.refetchPostComments () ;)

Bhttps://github.com/n8n-io/n8n/pull/602 1 /files#diff-
323013d0d7d5d8ad10da80e95dd88d67aba4550d6bcadf64b3f95375adc710ct

Authorized licensed use limited to: Korea University. Downloaded on July 22,2025 at 07:29:43 UTC from IEEE Xplore. Restrictions apply.

https://github.com/lan-ui/lan-ui/blob/a28f545e75dd8f444f7fdded965a27df9ac8dbe3/src/components/checkbox-group/checkbox-group.vue#L83
https://github.com/lan-ui/lan-ui/blob/a28f545e75dd8f444f7fdded965a27df9ac8dbe3/src/components/checkbox-group/checkbox-group.vue#L83
https://github.com/bootstrap-vue/bootstrap-vue/blob/5173dd19f6f46dc9d125cd7233fb59ccd2ef9296/docs/components/quick-links.vue#L55
https://github.com/bootstrap-vue/bootstrap-vue/blob/5173dd19f6f46dc9d125cd7233fb59ccd2ef9296/docs/components/quick-links.vue#L55
https://github.com/bootstrap-vue/bootstrap-vue/blob/5173dd19f6f46dc9d125cd7233fb59ccd2ef9296/docs/components/quick-links.vue#L55
https://github.com/Ocelot-Social-Community/Ocelot-Social/commit/54ca9a6e0c9ebf7a39516622cb95f86c793176f5
https://github.com/Ocelot-Social-Community/Ocelot-Social/commit/54ca9a6e0c9ebf7a39516622cb95f86c793176f5
https://github.com/n8n-io/n8n/pull/6021/files#diff-323013d0d7d5d8ad10da80e95dd88d67aba4550d6bca4f64b3f95375adc710cf
https://github.com/n8n-io/n8n/pull/6021/files#diff-323013d0d7d5d8ad10da80e95dd88d67aba4550d6bca4f64b3f95375adc710cf

1978

TABLE I
DISTRIBUTION AND APPLICABILITY OF OUR FIX PATTERNS
ACROSS THE THREE POPULAR SPA FRAMEWORKS

Fix Pattern | React | Angular | Vue
FP1 Applicable N/A N/A
FP2 Applicable Applicable Applicable
FP3 Applicable Applicable Applicable
FP4 Applicable | Applicable | Applicable
FP5 N/A N/A Applicable

FP5c. Unremoved Event Bus Listener

// B: Event bus

// E: Event

// C: Callback

// D: Destructor method

.B...$on(E, C);

+ D) {

+ B.Soff (E, C);
+ }

// Example
import { EventBus |} from ’.

mounted () {
EventBus.$on (' refreshPeerList’,
this.debounceFetchPeers)

1

+ beforeUnmount ()
+ EventBus.$off (' refreshPeerList’,
this.debounceFetchPeers)

./../services/EventBus’

In the example, the
this.debounceFetchPeers) i$ used to register an event listener
(debounceFetchpeers ()) that listens for the custom event
‘refreshPeerList’ emitted on the global EventBus.

By removing the listener from the bus using EventBus.$off
in the beforeunmount () hook, Vue ensures that resources asso-
ciated with event handling function (this.debounceFetchPeers)
are properly cleaned up when the component is about to be
destroyed.

Our fix patterns are highly applicable to popular SPA frame-
works as listed in Table I: React, Angular, and Vue. No-
tably, the majority of fixes are framework-agnostic. Even for
those that are technically framework-specific (unsubscribing
from subscriptions in Angular or removing event listeners from
the EventBus in Vue), the underlying concepts remain con-
sistent across frameworks. These fixes primarily address re-
source cleanup and memory management, making the approach
broadly adaptable with minimal manual effort once the core
principles are understood.

EventBus.$on (' refreshPeerList’,

D. Edit Scripts for the Fix Patterns

For each individual fix pattern, we create a corresponding
edit script to actually generate patches for potential memory
leaks. An edit script is another program that parses the target
program and locates potential leaking objects, where we apply

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 51, NO. 7, JULY 2025

the fix pattern. Each edit script has two components: (1) a
potential leak object locator and (2) a patch writer. Creating edit
scripts is a common procedure when applying a pattern-based
program repair technique [16], [14], [50], [15], [35]. Therefore,
we implement the scripts for our tool, which are available in our
replication package [51].

Coverage of the Patterns

The 7 fix patterns cover most of the fixed memory leaks
we have examined. Following the procedures described in Sec-
tion III-B, we manually reviewed 124, 64 and 40 reported leaks
in React, Angular and Vue applications respectively, that have
been confirmed and fixed by the developers. Our fix patterns can
non-intrusively fix 102 out of 124 (82%) leak types in React,
57 out of 65 (88%) already-known Angular-related memory
leaks and 32 out of 40 (80%) known leaks in Vue. The full
list of known memory leak bugs examined is available in our
replication package [51].

E. Applying Fix Patterns

As the second step, LEAKPAIR applies the fix patterns ex-
tracted in the first step (Section III-B). Basically, we assume
that one can apply LEAKPAIR to the whole project by scanning
the source code tree of the project, which implies that the edit
scripts explained in Section III-D are executed for each file.
Specifically, it follows the following procedure.

e Parsing and Detecting: LEAKPAIR makes use of the
Babel compiler [52] in conjunction with Facebook’s js-
codeshift [53] to traverse through the JS file (in the case
of a single file path) or all JavaScript files from the root of
the given project path. For each file, it extracts the AST by
leveraging the Babel compiler. During the AST traversal,
LEAKPAIR detects Angular, React, and Vue components
by matching their syntax definition. Once a component
from these frameworks is identified, it detects whether
the component implements any of the five memory leak
patterns by traversing the AST, visiting each node, and
matching the patterns illustrated in Section III-C.

o Creating Patches: If a leak pattern is matched, it tracks
the file name as well as how many objects are leaking due
to that leak type, i.e., are following the same pattern, in that
specific component. It then generates and adds the fix in
the AST. After the patch is successfully applied, it updates
the count of potentially leaking objects for that leak type,
in the project/file. Finally, it then converts the AST back
to source code by leveraging the Recast [54] library.

e Repeating and Reporting: LEAKPAIR repeats this pro-
cess for all the files if a project path was specified; oth-
erwise, the processing completes there. At the end of the
execution, it prints out the repaired file name(s) and the
total count of each leak type in the console (from which
the LEAKPAIR command was executed) as well as in an
external json file (if an output path was specified in the
command).

F. Non-Intrusive Patch Generation

To ensure that LEAKPAIR generates non-intrusive patches for
memory leaks in SPAs, we enforce the following conditions in

Authorized licensed use limited to: Korea University. Downloaded on July 22,2025 at 07:29:43 UTC from IEEE Xplore. Restrictions apply.

SHAHOOR et al.: PROACTIVE DEBUGGING OF MEMORY LEAKAGE BUGS IN SINGLE PAGE WEB APPLICATIONS

addition to the steps of standard pattern-based program repair
techniques [16], [15]:

e Localizing without test cases: Since LEAKPAIR proac-
tively generates patches for memory leaks in SPAs, it does
not rely on external fault localization techniques usually
based on test suites. Instead, our approach scans specific
objects in the source code. For example, FP1 detects all
observable objects in the target SPA.

e Avoiding redundant fix: Among the detected target ob-
jects, some of them are correctly used and memory leaks
are prevented, where LEAKPAIR does not need to generate
corresponding patches, for example, a subscription to an
observable that is already released. LEAKPAIR remains
idempotent by leaving such code unchanged. LEAKPAIR
achieves this through a simplistic AST parsing approach,
traversing the AST to identify nodes and relationships
matching leaky patterns and applying fixes only where
necessary. For example, if an event listener is added
but not removed in the destructor, LEAKPAIR will ap-
ply the fix. However, if it detects that the corresponding

removeEventListener 1S already called with the correct
target and listener nodes, it will leave the code as is.

e Checking non-intrusiveness: For each generated patch,
LEAKPAIR examines whether the patch breaks any func-
tionality. As the regression test suites are often available
for a target SPA, our approach runs the suites to find any
behavior changes. Although test cases may not guarantee
complete behavior integrity, the test results may show the
correctness of key functionalities for the target SPA.

IV. EVALUATION
A. Research Questions

Our experiments
questions:

1) RQ1. (Effectiveness) How effective is the tool at mini-
mizing/eliminating memory leaks?

2) RQ2. (Acceptability) How useful are generated patches,
as perceived by developers?

3) RQ3. (Non-intrusiveness) What is the impact of our tool
on test suite execution results?

investigate the following research

4) RQ4. (Comparison against GPT-4) How does
LEAKPAIR compare to GPT-4 in terms of their
performance?

The first research question is designed to assess the amount of
memory reduction when applying LEAKPAIR to SPAs. For this
RQ, we collect a set of known memory leaks and another set of
unknown leaks in open-source projects as experiment subjects.
We apply our tool to the subjects and examine their memory
footprints before and after repair.

While RQ1 assesses the effectiveness, RQ2 focuses on
whether the patches generated by LEAKPAIR can be accepted
by the developers of the open-source projects. As the unknown
leaks used in the experiments for RQ1 are in fact new defects,
we report them as new pull requests and see whether they are
merged or accepted.

1979

As LEAKPAIR is designed to generate non-intrusive patches,
it is necessary to assess whether the patches disrupt the func-
tionality of the target subjects or cause compilation errors.
Therefore, we designed RQ3 to assess non-intrusiveness. Our
experiments for this RQ try to compile the subject programs
used in the previous RQs and run the test cases already given
for the programs.

Finally, RQ4 is to compare LEAKPAIR with GPT. Recent
studies have shown the effectiveness of GPT in fixing function-
ality bugs, and in this work, we compare the effectiveness of
GPT in fixing memory leaks of SPAs with LEAKPAIR. To the
best of our knowledge, this is the first study to compare the
effectiveness of GPT in fixing memory leaks of SPAs. In this
study, we use GPT-4, which is the latest version of GPT at the
time of conducting the experiments.

B. Experiment Setup

We used the following experiment design to answer the re-
search questions described in Section IV-A.

1) Subjects: To assess the effectiveness of our tool, we
collected SPAs based on the following criteria:

e Maintained. We choose projects that are still being main-
tained and whose last update was less than a year ago.
Archived projects are not considered.

e Number of contributors. Projects with at least 10 con-
tributors are selected. Personal projects are not taken into
account.

e Number of commits. The selected projects have at least
100 commits on their GitHub repository.

e Popularity. Projects with at least 10 stargazers, watchers,
or forks are selected.

e Framework. The selected projects should use either React
or Angular as their base framework, as our target is SPAs.

Based on the above criteria, we collect a set of projects
with unknown new memory leaks and another set of projects
with already known leaks (i.e., those fixed by the developers).
The projects with already known leaks are necessary to show
whether our tool can reproduce the patches generated by the
developers of the projects. Other projects are collected to assess
the effectiveness of our tool in discovering and repairing new
and unknown memory leak patterns.

As a result, 60 projects are selected as the subjects for our
experiments to assess LEAKPAIR ; 30 projects have unknown
new memory leaks while 30 projects out of them have already
known memory leaks. Tables II and III list the 30 unknown and
30 known subjects, respectively.

2) Repairing Memory Leaks: To answer RQI1, our first
experiment applies our tool to the subjects described in Sec-
tion IV-B1. We run LEAKPAIR on the root of each subject so that
it scans the project directories and identifies JavaScript files. For
each source code file, the tool tries to change the file by applying
each pattern. Our tool addresses all locations if applicable.

After applying LEAKPAIR, we then measure the memory
footprints. Because we need to run the target subject to de-
termine memory consumption, we create a scenario file for
each subject. Using scenario files is a common procedure when

Authorized licensed use limited to: Korea University. Downloaded on July 22,2025 at 07:29:43 UTC from IEEE Xplore. Restrictions apply.

1980

measuring the memory consumption of web applications. For
example, BLeak [12] and MemLab [44], the most recent tech-
niques to detect memory leaks, require scenario files to run the
target web applications. The scenario files used for each subject
are available in our replication package [51].

To compare the memory consumption, we compute the mem-
ory footprints before and after applying LEAKPAIR. For each
subject, the corresponding scenario file is executed 25 times
with 1oop-10 (i.e., 25 x 10 times in total for each subject)
since a single loop may not accurately reveal the memory con-
sumption. We then collect memory consumption in megabytes
(MB) and the number of object clusters [44], where a cluster
is the collection of all retainer paths for all the leaking objects
due to a single leak origin. Applying the Mann-Whitney U test
[108], we compute the statistical significance of the differences
between values before and after patches. Note that this is not a
stage of LEAKPAIR ; rather, this is only for the evaluation.

3) Reporting Generated Patches: As the unknown memory
leaks are basically newly found bugs, we report the leaks to
the repositories of the subjects. For each patch generated by
our tool, we create a pull request with the patch and memory
footprints before and after applying the tool. The outcome of the
reported pull requests can be agreed , pDisagreed , O Ignored .
The 3 types of outcomes for our PRs are recorded to answer
RQ2.

4) Running Test Cases on Patches: To figure out whether
the patches generated by LEAKPAIR break the functionality of
the subjects, we execute the test cases available in the subjects
and count the number of passing and failing cases. As most
of the popular open-source projects maintain (regression) test
suites, we simply run the test cases included in the subjects.
Many subjects use test automation frameworks; in that case, we
resort to those frameworks; otherwise, we follow the instruc-
tions available in the contribution guide for each subject. We
also compare the number of passing/failing test cases before
and after applying LEAKPAIR. The results of this experiment
can answer RQ3.

5) Repairing Memory Leaks With GPT: In this study, we
primarily focus on evaluating the patch generation capability of
GPT-4, while assuming a separate process for fault localization.
That is, we directly pass a code snippet causing a memory leak
to GPT and ask it to fix the leak. This approach is similar to
the perfect fault localization assumption widely adopted in the
APR literature [15], [22]. Under the perfect fault localization
assumption, APR tools are provided with the exact fault loca-
tion and generate a patch to fix it. The perfect fault localization
assumption is used under the following APR scenario. First,
a ranked list of suspicious locations is generated by using a
fault localization technique. Then, the APR tool iterates over
this list and generates patches for each suspected location. This
approach works on the premise that a fault can be confined to
a single location, whether it be a single line, a single function,
or a single file.

We use the above perfect fault localization assumption be-
cause it is difficult to perform fault localization with GPT due
to the limited size of the context window—GPT-4’s context
window size is bound to 8,192 tokens. Assuming perfect fault

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 51, NO. 7, JULY 2025

TABLE 11
SUBJECTS WITH UNKNOWN MEMORY LEAKS

D | Program | Type |SPA Framework | Commit Hash
Ul react-zoom-pan-pinch [55] Library React £dc030
U2 | Angular Extentions Elements [56] | Library Angular dYa4e4
U3 Evergreen [57] Framework React 82c3a8
U4 ngx-datatable [58] Library Angular 6184c9
us react-multi-carousel [59] Library React 525793
U6 codetekt (Frontend) [60] Website Angular 7b8289
U7 skbkontur/retail-ui [61] Framework React 32f3cf
Us Aam Digital [62] Web app Angular 304ff9
U9 Replay’s DevTools [63] Library React 24d10f
ul10 ngx-bootstrap [64] Framework Angular 663c70
Ul1 DefichainIncome [65] Web app Angular 911509
Ul12 Collosal [66] Web app React 798e7a
Ul13 The Book Thieves [67] Web app React 6delaé6
Ul4 Mempool [68] Web app Angular 5905ee
Uls DSpace [69] Web app Angular b29dde
Ule PrimeNG [70] Library Angular 085a4e
u17 Formly [71] Library React e262fb
U18 Foxglove Studio [72] Web app React d49827
U19 BootstrapVue [73] Framework Vue 5173dd
U20 Chatwoot [74] Framework Vue 11b27f
U21 think-vuele [75] Library Vue 2e256f
U22 vue-admin-better [76] Framework Vue £34069
U23 Vue Grid Layout [77] Library Vue 6e5367
U24 Weaverbird [78] Framework Vue laa799
u25 AutoAnimate [79] Library Vue b62aa8
U26 vue-snap [80] Library Vue 2cbl4b
U227 Element [81] Library Vue 290e68
U28 lan-ui [82] Framework Vue a28f54
uU29 iView [83] Library Vue c3f57f
U30 Buefy [88] Library Vue b469a3

localization, we focus on the patch generation capability of
GPT-4. In comparison, recall that LEAKPAIR performs fault lo-
calization and patch generation simultaneously by scanning the
AST of each source code file in a project; the size of the program
is generally not a concern for LEAKPAIR. Due to the GPT’s
context-window size limitation, we provide a more favorable
condition for GPT compared to LEAKPAIR by assuming perfect
fault localization.

We reuse the 30 projects with known memory leaks (see
Table IIT) used in RQ1. Recall that for those projects, developer-
written patches for memory leaks are available. We apply GPT
to the program location modified by the developers, as de-
scribed in the previous paragraph. Meanwhile, we do not reuse
the unknown subjects listed in Table II for this experiment, due
to the lack of developer-written patches.

Our experiment for this RQ asks GPT to generate patches
with the following procedure. The faults in our subjects are
confined to a single location with diverse granularity. In some
subjects, the fault is confined to a single function (i.e., the
developer-written patch modifies a single function), while in
others, it is confined to a single class or a single file. Depend-
ing on the granularity of the developer-written patch, we pass
the corresponding code snippet to GPT. For instance, if the
developer-written patch is confined to a single function, we pass
the buggy function to GPT. If the developer-written patch is
confined to a single class, we pass the buggy class to GPT. In
eight subjects out of 30, the developer-written patches modify
multiple files. In seven out of these eight subjects, the developer-
written patches consist of multiple atomic patches, where each
atomic patch is independent of the others and is confined to a
granularity smaller than a file. For these seven subjects, we treat

Authorized licensed use limited to: Korea University. Downloaded on July 22,2025 at 07:29:43 UTC from IEEE Xplore. Restrictions apply.

SHAHOOR et al.: PROACTIVE DEBUGGING OF MEMORY LEAKAGE BUGS IN SINGLE PAGE WEB APPLICATIONS

TABLE III
SUBJECTS WITH KNOWN MEMORY LEAKS

D | Program | Type |SPA Framework | Commit Hash
K1 react-zoom-pan-pinch [55] Library React 6e35b3
K2 | Fundamental Library for Angular [85] Library Angular be9629
K3 react-multi-carousel [59] Library React 5d252d
K4 Angular Components [56] Framework Angular 1bbb29
K5 Material UI [86] Framework React e92blc
K6 | Angular Components documentation [87]| Website Angular e8cbod
K7 Rooster [6] Library React c3f2f0
K8 Octant [88] Framework Angular b079ad
K9 Evergreen [57] Framework React a716f4
K10 Transloco [89] Library Angular 2338a0
K11 MonitorFish [90] Website React 6e35b3
K12 react-customizable-progressbar [91] Library React 4bo0afl
K13 Secret Network Oracle Client [92] Library React 5d252d
K14 Mempool [68] Website Angular 631de8
K15 Momentum Mod [93] Website Angular 203707
K16 PatternFly React [94] Library React f4de651
K17 React Number Format [95] Library React 11de23
K18 Help Scout Design System [96] Library React b079ad
K19 mappit [97] Website React be6979
K20 Vue-Tree [98] Library Vue c53d34
K21 Open MCT [99] Web app Vue cd5699
K22 clr.fund [100] Web app Vue 8184bc
K23 web-mapviewer [101] Web app Vue e97f4c
K24 InstaLog [102] Web app Vue 89bbas
K25 n8n [103] Web app Vue 053a4f
K26 Element [81] Library Vue 23e818
K27 Prefect UI [104] Framework Vue 6e889b
K28 PyCon TW official website [105] ‘Website Vue 268el2
K29 2N.fm [106] Web app Vue 891d9a
K30 Documentation for Vue 3 [107] Website Vue Sbllle

A JavaScript function provided below may contain memory leak(s). Please,
fix all memory leaks that you can find.

1. If you cannot find any memory leaks, just reply “no leaks detected”.

2. If you found a memory leak, modify the provided JavaScript function and
fix the memory leak.

3. You should return the entire function that I provided after fixing the
memory leaks.

4. Do not include comments like “// Rest of your component here....”, “/* rest
of JSX class here */”, or “/* rest of the component remains unchanged */”
because you SHOULD return the fixed function entirely.

5. Surround the fixed function with triple backticks (**").

6. Do not include any explanations.

JavaScript function:

[the function subject to repair]

Fig. 5. Prompt template for function-level granularity. “[the function subject
to repair]” is replaced with the code snippet. The templates for the other
granularities are similar.

each modified file separately and decide the granularity based
on the developer-written patch for that file. In the remaining
subject (i.e., K20), an atomic patch encompasses multiple files
and we exclude this subject from our evaluation.

For each file subject to repair, we collect 10 patches using
GPT-4 by running the prompt 10 times. Fig. 5 shows the prompt
template we use for the function-level granularity. We use sim-
ilar prompts for class- and file-level granularities.

We consider a patch plausible if it satisfies the following
conditions: (1) the subject runs without any errors when the
patch is applied, and (2) there is no regression error. For each
plausible patch, we measure the memory consumption using
MemLab before and after applying the patch. We consider a
patch valid if it reduces the memory consumption.

1981

V. RESULTS

This section presents and analyzes the results of experiments
to answer the research questions described in Section I'V.

A. RQI: How Effective Is LeakPair?

The patches generated by LEAKPAIR can reduce memory
consumption, as shown in Tables IV and V. We apply the
tool to each subject listed in Table II (projects with unknown
memory leaks) and III (projects with already known leaks)
according to the procedure described in Section IV-B2. In the
result tables, the reak patterns column lists the fix patterns
(see Section III-C) successfully applied to each subject. The
Leaked Objects * columns represent the number of clusters
in which objects are potentially leaking the memory space,
before and after applying our tool, and the difference. The
Heap size x columns show the average heap size based on
the 25 iterations before and after applying our tool, and the
difference.

As shown in Tables IV and V, respectively, LEAKPAIR re-
duces memory consumption in the majority of the subjects. The
statistical significance of the differences are denoted as *:p-
value<0.05 and *x*:p-value<0.01.

The reduction is relatively larger for the subjects with un-
known leaks. This seems to be because the subjects with known
leaks tend to be better maintained in terms of memory man-
agement than the subjects with unknown leaks. Note that for
the subjects with known leaks, we reverted the patches applied
by the developers to introduce the leaks. The developers for
these subjects are aware of the leaks and are likely to pay
more attention to memory management, which could explain
the smaller reduction in memory consumption.

In contrast to the general pattern, memory consumption in-
creases in subject U25 after applying LEAKPAIR, although the
increase is only 0.9 MB. However, the number of leaked clus-
ters decreased from 11 to 2, indicating that the applied fix is
effective. A possible explanation for the increase in memory
consumption despite the reduction in the number of leaked
clusters is that while the fix eliminated 9 leaked clusters out of
11, the remaining two clusters may contain garbage objects that
are not collected by the garbage collector yet. Note that Mem-
Lab, the tool we used to measure memory consumption, can be
conservative when detecting leaked objects. Although garbage
objects will be eventually collected, they may temporarily
increase memory consumption until the garbage collector
runs.

The plots in Figs. 6 and 7 illustrate the changes in the memory
heap size before and after the leak fixes. The horizontal axis
represents the 25 iterations, while the vertical axis denotes the
minimum to maximum range of the heap size of each subject
(with or without a fix). no patch , represented with pink lines,
denotes the heap size before the fix, while the blue line is for
heap size after applying the patch by LEAKPAIR.

Although there was some fluctuation due to the nature of web
applications (e.g., it can be affected by the browser status even
for the same scenarios), it turns out that our patches contribute

Authorized licensed use limited to: Korea University. Downloaded on July 22,2025 at 07:29:43 UTC from IEEE Xplore. Restrictions apply.

1982 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 51, NO. 7, JULY 2025

TABLE IV
MEMORY CONSUMPTION RESULTS BEFORE AND AFTER APPLYING LEAKPAIR TO THE SUBJECTS IN TABLE II

Leaked Objects Leaked Objects Leak Object || Heap Size Before | Heap Size After Total Heap

ID | Leak Patterns Before applying LEAKPAIR | After applying LEAKPAIR | Reduction ||applying LEAKPAIR | applying LEAKPAIR | Size Reduction
Ul FP3 5.5 clusters 5 clusters 0.5 cluster 31.9 MB 31.5 MB 0.4 MB (1.3%)*
U2 FP1, FP2 9 clusters 8.5 clusters 0.5 clusters 17.3 MB 16.7 MB 0.6 MB (3.5%)*x*
U3 FP4 5 clusters 3 clusters 2 clusters 34.3 MB 29.2 MB 5.1 MB (14.9%)**
U4 FP3, FP4 8 clusters 7 clusters 1 cluster 367.1 MB 364.9 MB 2.2 MB (0.6%)
Us FP3 4 clusters 3.5 clusters 0.5 cluster 20.9 MB 20.9 MB 0 MB (0%)=*
U6 FP1, FP3 10.5 clusters 9 clusters 1.5 clusters 44.2 MB 43.5 MB 0.7 MB (1.6%)
U7 FP3 6.5 clusters 5.5 clusters 1 clusters 229.2 MB 222.8 MB 6.3 MB (2.7%)x*
U8 FP1 2 clusters 2 clusters 0 clusters 322.5 MB 265.8 MB 56.7 MB (17.6%)**
U9 FP3 5 clusters 3 clusters 2 clusters 27 MB 26.4 MB 0.6 MB (2.2%)
U10 FP1 6.5 clusters 6 clusters 0.5 clusters 101.4 MB 101 MB 0.4 MB (0.3%)
Ull1 FP1 5 clusters 4 clusters 1 cluster 60.5 MB 60.4 MB 0.1 MB (0.1%)
Ul2 FpP2 6 clusters 5 clusters 1 cluster 83.7 MB 40.7 MB 43 MB (51.4%)
ul13 FP3 2 clusters 1 cluster 1 cluster 56.9 MB 54.3 MB 2.5 MB (4.4%)
Ul4 FP1, FP4 2 clusters 1 cluster 1 cluster 88.9 MB 63.6 MB 25.3 MB (28.3%)**
Ul5 FP1 4.5 clusters 4.5 clusters 0 cluster 69.05 MB 68.65 MB 0.4 MB (0.6%)**
Ul6 FP1 6.5 clusters 5.5 clusters 1 cluster 20.2 MB 19.5 MB 0.7 MB (3.5%)
u17 FP1, FP2 2.5 clusters 2.5 clusters 0 cluster 13.8 MB 13.5 MB 0.3 MB (2.5%)
Ul18 FP2, FP3 6 clusters 6 clusters 0 clusters 61.8 MB 61.8 MB 0 MB (0%)
Ul19 FP5b 7 clusters 4 clusters 3 clusters 198 MB 163.6 MB 34.4 MB (17.4%)
U20| FP2, FP5c 0 clusters 0 clusters 0 clusters 295.2 MB 281.3 MB 13.9 MB (4.7%)
U21 FP5c¢ 2 clusters 1 clusters 1 clusters 48.8 MB 39.6 MB 9.2 MB (18.9%)
U22| FP2, FP5c 11 clusters 11 clusters 0 clusters 181.7 MB 176.4 MB 5.3 MB (3%)*
U23 FP2 0 clusters 0 clusters 0 clusters 16.7 MB 16.6 MB 0.1 MB (0.6%)*
U24 FpP2 6.5 clusters 6 clusters 0.5 clusters 216.9 MB 213.6 MB 3.3 MB (1.5%)
u25 FP2, FP3 11 clusters 2 clusters 9 clusters 12.6 MB 13.5 MB 0 MB (0%)**
U26 FP5a 2.5 clusters 2.5 clusters 0 clusters 21.1 MB 20.8 MB 0.4 MB (2.3%)
U27| FP2, FP5c 3 clusters 3 clusters 0 clusters 65.7 MB 63 MB 2.7 MB (4.1%)
U28| FP2, FP5c 0 clusters 0 clusters 0 clusters 24.4 MB 24.4 MB 0 MB (0%)
U29| FP2, FP5a 7 clusters 7 clusters 0 clusters 161.5 MB 158.9 MB 2.6 MB (1.6%)**
U30| FP2, FP5c 11.4 clusters 10.6 clusters 0.8 clusters 401.6 MB 401.6 MB 0 MB (0%)
*: p-value < 0.05, *x*: p-value < 0.01.
TABLE V

MEMORY CONSUMPTION RESULTS BEFORE AND AFTER APPLYING LEAKPAIR TO THE SUBJECTS IN TABLE III

Leaked Objects Leaked Objects Leak Object || Heap Size Before | Heap Size After Total Heap

ID | Leak Patterns Before applying LEAKPAIR | After applying LEAKPAIR | Reduction ||applying LEAKPAIR | applying LEAKPAIR | Size Reduction
K1 FpP2 4.5 clusters 4 clusters 0.5 clusters 32 MB 32 MB 0 MB (0%)
K2 FP1 0 cluster 0 cluster 0 clusters 55.6 MB 55.5 MB 0.1 MB (0.2%)*
K3 FP3 3 clusters 2.2 cluster 0.8 cluster 25.9 MB 24.9 MB 1 MB (0%)x*
K4 FP1 10 clusters 10 cluster 0 cluster 56.9 MB 44.6 MB 12.3 MB (21.6%)**
K5 FP3 10.4 clusters 10 clusters 0.4 clusters 15.05 MB 15.05 MB 0 MB (0%)
K6 FP1 1 clusters 0.6 clusters 0.4 clusters 15.05 MB 15.05 MB 0.0 MB (0%)
K7 FP2 3 clusters 3 clusters 0 clusters 17.45 MB 17.45 MB 0 MB (0%)
K8 FP1 13 clusters 12.5 clusters 0.5 clusters 161.6 MB 161.3 MB 0.3 MB (0.2%)
K9 FP3 4.5 clusters 4.5 clusters 0 clusters 33.8 MB 33 MB 0.8 MB (2.4%)*
K10 FP1 0.5 cluster 0.5 cluster 0 cluster 9.2 MB 9.2 MB 0.0 MB (0%)
K11 FP2, FP3 1 clusters 1 clusters 0 clusters 66.2 MB 66.1 MB 0.1 MB (0.2%)
K12 FP3 1 cluster 1 cluster 0 cluster 7.2 MB 7.1 MB 0.1 MB (1.4%)
K13 FP2 2.5 clusters 2.4 cluster 0.1 cluster 86.2 MB 86.2 MB 0 MB (0%)=*
K14 FpP2 7 clusters 7 clusters 0 cluster 89 MB 88.9 MB 0.1 MB (0.1%)
K15 FP1 0 clusters 0 clusters 0 clusters 31.2 MB 31.2 MB 0 MB (0%)
K16 FP3 2.5 clusters 2.5 clusters 0 clusters 6 MB 5.8 MB 0.2 MB (3.3%)
K17 FP3 0 clusters 0 clusters clusters 7 MB 7 MB 0 MB (0%)
K18 FP3 1.3 clusters 1.1 clusters 0.2 clusters 34.5 MB 34.5 MB 0 MB (0%)
K19 FP1 3.5 clusters 2 clusters 1.5 clusters 20.3 MB 20.1 MB 0.2 MB (0.1%)*x*
K20 FP5c 0 clusters 0 clusters 0 clusters 12.1 MB 12.1 MB 0 MB (0%)
K21 FP5a 10 clusters 10 clusters 0 clusters 269.2 MB 269.1 MB 0.1 MB (0.03%)
K22 FP3 4 clusters 3.5 clusters 0.5 clusters 57.7 MB 57.2 MB 0.5 MB (0.9%)
K23 FP2, FP3 1 clusters 1 clusters 0 clusters 113.8 MB 113.5 MB 0.3 MB (0.3%)*
K24 FP3 0 clusters 0 clusters 0 clusters 9.2 MB 9.1 MB 0.1 MB (1.1%)
K25 FpP2 13 clusters 12.9 clusters 0.1 clusters 209 MB 209.6 MB 0 MB (0%)
K26 FP3 1 clusters 1 clusters 1 clusters 52 MB 52 MB 0 MB (0%)
K27 FpP2 26 clusters 25 clusters 1 clusters 150.8 MB 149.2 MB 1.6 MB (1.1%)
K28 FpP2 1 clusters 0.8 clusters 0.2 clusters 40.5 MB 40.5 MB 0 MB (0%)
K29 FpP2 0 clusters 0 clusters 0 clusters 8.3 MB 8.3 MB 0 MB (0%)
K30 FP2 10.5 clusters 10.5 clusters 0 clusters 18.1 MB 15.3 MB 2.8 MB (45.3%)

*: p-value < 0.05, sx: p-value < 0.01.

Authorized licensed use limited to: Korea University. Downloaded on July 22,2025 at 07:29:43 UTC from IEEE Xplore. Restrictions apply.

SHAHOOR et al.: PROACTIVE DEBUGGING OF MEMORY LEAKAGE BUGS IN SINGLE PAGE WEB APPLICATIONS 1983
— ~— no batch 35 370 — — no patch
g32.00 218 ——redkPair g @ 325 ~—— LeakPair
g g y g g 360 8
N N
§31.25{ — no patch 2 i no patch § 350 — nopatch | &
+ —— LeakPair —— LeakPair — LeakPair
31.001 - - - 16 20
0 10 20 0 10 20 0 10 20 0 10 20 0 10 20
Loop Iteration Step Loop Iteration Step Loop Iteration Step Loop Iteration Step Loop lteration Step
(a) U1 (b) U2 (c) U3 (d) U4 (e) U5
260 f 27.5 106
. ——— no patch | ~ —— no patch | _ 320 _ —
m44.5 R m R) o o
= —— LeakPair | = — LeakPair | 5 s27.0 =104
< =240 =300 < =
9 240 \/ V\f 8 8 ~— no patch 9 265 Y102 ~— no patch
[0 v 5gp{ — LeakPair (e n ~—— LeakPair
a 2220 e a 2100 I i
b 3 3 $26.0{ —— no patch o U V
T 435 T T 260 \ / V T ——— LeakPair T o8
200 255 - -
0 10 20 0 10 20 0 10 20 0 10 20 0 10 20
Loop Iteration Step Loop Iteration Step Loop Iteration Step Loop Iteration Step Loop Iteration Step
) Uo (g U7 (h) U8 (i) U9 () U10
90
69
60.75 280 A" = no patch | =
g = =58 ——— LeakPair = g0 =68
EGO.SO é ~— no patc‘h é é ~—— no patc‘h .§67
iZGO.ZS %60 —— LeakPair %56 %70 —— LeakPair %66
3 ~ no patch [} o} i} ~—— no patch
£60.00 —— LeakPair * * \AM = —V - LeakPair
¥ 40 54 60 65
59755 0 20 0 10 20 0 10 20 0 10 20 0 10 20
Loop Iteration Step Loop Iteration Step Loop Iteration Step Loop Iteration Step Loop Iteration Step
(k) Ul1 1) U12 (m) U13 (n) Ul4 (o) U15
720 ~13.8 562 5225 =
= 2 2 2 2
b < 2 61 = =
g 19 g 13.6 no patch | 8 — no patch Y 200 9 —— no patch
‘%18 5 7134 — LeakPairl ‘%eo — '-veakvpa'r D1751 = 0 290 — LeakPair
2 = no patc| ©132 ' U s -~ no patch 3 285
Ti17 —— LeakPair | T T59 1501 | cakpair T
13.0 -
0 10 20 0 10 20 0 10 20 0 10 20 0 10 20
Loop lteration Step Loop Iteration Step Loop lteration Step Loop Iteration Step Loop Iteration Step
(p) Ul6 (@) U17 () U18 (s) U19 ® U20
50.0 200
. s ——— no patch _17.0 ~216
2475 A [_ g 190 ~—— LeakPair Q g AS\ N\
45,0 — nopatch |\ & g 165 8214 —— o patch
] — ir | @] n R
2425 Liakpair 3 2 16.0 2 L 13.00 —— LeakPair
3 470 3 ~—— no patch v 212 ——— no patch
T 40.0 * T 15.5{ — LeakPair = —— LeakPair | T12.75
0 10 20 0 10 20 0 10 20 0 10 20 0 10 20
Loop Iteration Step Loop lteration Step Loop Iteration Step Loop lteration Step Loop Iteration Step
(u) U21 (v) U22 (w) U23 (x) U24 (y) U25
P === no batch V7 NS A — R R
m22 - s 24.400 — no patch | _ no patch
= — LeakPair “5364'5 z — nopatch | @ 200 —— LeakPair %3400 —— LeakPair
o ~ =24.375 —— LeakPair | = <
K ©64.0 —— nopatch | > 8 8
g2 o —— LeakPair | 24.350 i 180)
g 263.5 a 3 2350
g e §24.325 9 g
T 160
20 63.07 7N
24.300 300
0 10 20 0 10 20 0 10 20 0 10 20 0 10 20
Loop lteration Step Loop Iteration Step Loop Iteration Step Loop Iteration Step Loop Iteration Step
(z) U26 (aa) U27 (ab) U28 (ac) U29 (ad) U30
Fig. 6. Heap size over loops after applying LeakPair to the subjects listed in Table II.

to reducing memory consumption, or at least, they do not add
to it, nor do they introduce any new leaks. Again, it is notice-

able how the subjects with unknown leaks (Fig. 6) showed a

significant heap reduction as compared to the ones with known

leaks (Fig. 7).

The results of our experiments may imply that LEAKPAIR is
effective for most SPAs, no matter how it is maintained. It might
be helpful to reduce memory consumption, and it can further
prevent potential memory bloats. Furthermore, it does not add

any harmful code and does not increase memory consumption
in any way.

Answer to RQ1: LEAKPAIR can generate patches to fix
memory leaks in SPAs without leak detection, and the
patches successfully reduce applications’ memory consump-
tion. It turns out that they are competitive with the original
patches written by human developers.

Authorized licensed use limited to: Korea University. Downloaded on July 22,2025 at 07:29:43 UTC from IEEE Xplore. Restrictions apply.

1984

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 51, NO. 7, JULY 2025

— ——— no patch ,\58-0 - @55 - = no patch
m32.2 . o o s o R
s ——— LeakPair =575 =275 1= s —— LeakPair
~ ~ ~ 9 — ~29.6
9 I 9 9950 8 no patch 9
320 & 57.0 [050 —— LeakPair | &
2 318 8 56.5{ = no patch 2 225 ~— no patch § 2
T2 - LeakPair T 20.0 - LeakPair 45 T
0 10 20 0 10 20 0 10 20 0 10 20 0 10 20
Loop lteration Step Loop lteration Step Loop Iteration Step Loop Iteration Step Loop lteration Step
(a) K1 (b) K2 (c) K3 (d) K4 (e) K5
15.20 S - —~ —— no patch 9.40 —
— ~— no patch 17.500 - ey 167.5) — no patch @ 36 L = no patch
g i o) - = —— LeakPair | @ LeakRal
= 15.15 — LeakPair 217475 —— LeakPair | = 165.0{ — LeakPair < =935 —— LeakPair
& g & 534 X930
& N17.450 S1625 a3 &
2 g £160.0 3 §o.25
© . .
e 3 17.425 ki £32 2
17.400 157.5 9.20
0 10 20 0 10 20 0 10 20 0 0 20 0 10 20
Loop lteration Step Loop Iteration Step Loop lteration Step Loop Iteration Step Loop lteration Step
H K6 (@ K7 (h) K8 () K9 (j) K10
T 7.3 > 95 . .
_ —— nopatch | & no patclh o _89.25 _ —— no patch
g 66.4 —— LeakPair §7) —— LeakPair | £ gg g g 32,5 —— LeakPair
° ' 9 —— no patch | <89:00 b
g N o 8 N320
‘2_66.2 127 1 L2_85 LeakPair | B 88.75 ‘g_
© g o g — tch]
£ T 80 B 8850 o patc 2315
—— LeakPair
66.0 7.0 88.25
0 10 20 0 10 20 0 10 20 <20 10 20 0 10 20
Loop Iteration Step Loop Iteration Step Loop Iteration Step Loop Iteration Step Loop Iteration Step
(k) K11 () K12 (m) K13 (n) K14 (o) K15
22.50 7.100 —~ 20
—~ — ~ nopatch | @3,) 5125 ~—— no patch
) o R = = o iz —— LeakPair
=22.45 =7.075 ~—— LeakPair |~ <19 =
bt > g ~—— nopatch | g P
N | N g
N22.40 N7.050 ¥ 33 —— LeakPair 213 %120
Q Q
©22.35{ —— no patch ©7.025 § v § 17{ — no patch g
T J— i T ——— LeakPair T
LeakPair 32 16
22.30 7.000 - 11.5
0 10 20 0 10 20 0 10 20 0 10 20 0 10 20
Loop Iteration Step Loop Iteration Step Loop Iteration Step Loop Iteration Step Loop Iteration Step
(p) K16 (@) K17 (r) K18 (s) K19 (® K20
116 9.30 i
5 ~ no patch 58.400 T folren | & _ —— nopatch | =200
2801 —— LeakPair n pateh | 2 o5 — LeakPair | =
b = 58.375 —— LeakPair | <= = <175
v 2 0114 —— no patch | o @
N270 9 N N N
w 5 58.350 n —— LeakPair |0 0150
Q Q o Q
3 s 3 o 3 _ tch
9 260 §58.325 0112 ' L 151 3 no pa
* z T T T125) LeakPair
58.300
0 10 20 0 10 20 0 10 20 0 10 20 0 10 20
Loop Iteration Step Loop Iteration Step Loop Iteration Step Loop lteration Step Loop Iteration Step
(u) K21 (v) K22 (w) K23 (x) K24 (y) K25
52.100 —~ —— no patch | _ V 286 ~— no patch aa20 —— no patc.h
= ~—— no patch uza 152 LeakPair g 40.4 = —— LeakPair | = ——— LeakPair
= 52.075{ —— LeakPair < = Sa4 ;
v g g B x18 \
& 0 n [} 0
Lg-52.050 ‘3150 ‘340.2 %8 2 a
© © [
$ 52.025 1} o no patch] 016
[
T * T —— LeakPair T80 *
52.000 40.0
0 10 20 0 10 20 0 10 20 0 10 20 0 10 20
Loop Iteration Step Loop Iteration Step Loop lteration Step Loop Iteration Step Loop Iteration Step
(z) K26 (aa) K27 (ab) K28 (ac) K29 (ad) K30

Fig. 7. Heap size over loops after applying LeakPair to the subjects listed in Table III.

B. RQ2: Are the Patches by LeakPair Acceptable?

To assess the acceptability of patches generated by
LEAKPAIR, a live study was carried out on active open-source
SPA projects (including SPA websites and libraries used by
them), as described in Section IV-B3.

The study involves creating pull requests (PRs) for patches
by LEAKPAIR for the subjects in Table II, and observing the
outcome of pull requests. We submitted 32 pull requests after

clustering similar leaks/patches and confirming a substantial
reduction in the count of memory leaks or heap size by the
patches, together with the analysis results by Memlab [44].
Table VI contains the results of the live study up to the sub-
mission date. mergeda refers to PRs that were directly merged
in the original form. rmproved represents the cases where the
developer(s) do not merge the original PR, but rather create a
new PR to address the issues or make improvements in their

Authorized licensed use limited to: Korea University. Downloaded on July 22,2025 at 07:29:43 UTC from IEEE Xplore. Restrictions apply.

SHAHOOR et al.: PROACTIVE DEBUGGING OF MEMORY LEAKAGE BUGS IN SINGLE PAGE WEB APPLICATIONS

TABLE VI
RESULTS OF PULL REQUESTS REPORTING THE PATCHES GENERATED BY
LEAKPAIR, WHICH FIX UNKNOWN LEAKS IN SUBJECTS LISTED IN TABLE II

Agreed .
Metged Approved Tmproved Disagreed ‘ Ignored ‘ Total
14 2 0 0 \ 16 | 32

code themselves, based on our PR submission. Sometimes the
project authors acknowledge the issues that were fixed by the
PR but the merging of the PR remains pending or undecided,
the approved section covers these cases. Dpisagreed denotes
the instances where the developer rejects acknowledging the
issue entirely, while 1gnoreda are PR that received no action
(tag/comment/reaction) by the project authors up till the date
of submission.

Sixteen out of 32 PRs (50%) are approved by the developers,
out of which 9 were merged directly. One PR led to the creation
of a separate PR by the project developers based on the changes
in our PR, which addressed the same leak patterns but used a
slightly different approach (in compliance with their specific
programming conventions), which was then merged. The leak
patterns repaired in 2 of the PRs are approved as anti-patterns
by the authors that need to be addressed; however, the PRs for
them have not yet been merged. The authors have taken note
of our repairs and plan to address the leak patterns themselves
soon.

One of our PRs inspired the project owner to fix a similar
memory leak pattern as the one in the PR. It is worth noting that
no PR has been rejected so far, which further corroborates the
non-intrusive nature of LEAKPAIR patches. 16 PRs did not get
any response from the developers up to the date of submission.

Answer to RQ2: The patches generated by LEAKPAIR are
even acceptable to the developers of the target projects.
While more than half of the patch suggestions are accepted,
there are no explicitly rejected patches.

C. RQ3: Do the patches break the functionality?

Fortunately, our approach of ensuring correctness benefits
from the modular structure of the single-page applications,
where each component is typically written in a separate file
(module). Even if a specific test case for a particular component
is not available, the shared nature of code among modules
means that a failure in one component is likely to impact others,
and at the very least, the root component. When this happens,
the application would most likely fail to compile successfully
or break at least some test cases.

To show the non-intrusiveness of the patches generated by
our tool, we built and compiled the application after the patch
application by LEAKPAIR. Then we ran the test cases of each
subject according to the procedure explained in Section IV-B4.
We could not run test suites for two and four subjects listed in
Tables II and II1, respectively. Across the 40 projects containing
test cases, we evaluated a total of 15,315 test cases, with an
average of 382.88 test cases per project. The number of test

1985

cases per project ranged from 1 to 4,272. The tables report on
the execution time of the test suites as well.

As shown in Tables VII and VIII, the patches generated by
LEAKPAIR do not introduce any new positive or negative test
outcomes 99% of the time. For one subject (U28), we see new
failing test cases after LEAKPAIR fixes; this is because one of the
fix patterns (Event listener leak fix) used by LEAKPAIR makes
use of a web API (AbortController [109]) which is supported
by all modern mainstream browsers; however, the dynamic tests
provided within the project U28 were written using an obsolete
browser that does not support the API.

For subjects with some skipped and failed test cases in the
original version, we checked if any new positive or negative test
cases had replaced the previous outcomes. Again, we found no
discrepancies (other than for U28), indicating that our patches
do not change the behaviors of the subjects, at least with respect
to the test suites provided. In addition, no significant differences
were noted with respect to test execution times either, as can be
seen from the columns Elapsed time before applying LEAKPAIR
and Elapsed time after applying LEAKPAIR.

The results of this experiment show that LEAKPAIR is un-
likely to break the functionality of SPAs when generating
patches to fix potential memory leaks. This implies that the
users of LEAKPAIR may apply the tool without having the
functionality changed. Although running test suites may not
guarantee the non-intrusiveness of patches, our tool is highly
likely to generate patches that preserve the behaviors of the
programs.

Answer to RQ3: According to the test results, the patches
by LEAKPAIR are not intrusive. Although test suites cannot
guarantee their correctness, the patches do not break any
functionality, at least from a maintenance perspective.

D. RQ4: How Does LeakPair Compare With GPT-4?

Table IX shows the results for RQ4. The first column shows
the project IDs and the second column shows the heap size
measured by MemLab when the original buggy project is used.
The third column shows the file IDs; each file modified in the
developer-provided patch is assigned a unique ID. The fourth
column shows the patch granularity used to modify the file
using GPT-4, which can be one of the following: function, class,
or file. For each file, we retrieve ten patches generated by GPT-
4. The number of plausible patches and valid patches are shown
in the seventh and eighth columns, respectively. Occasionally,
the generated patches fail to run the target SPA project and the
“Run Failure” columns show the number of such patches. Even
if the patches run successfully, they may not pass the test suite,
and the “Test Fail” column shows the number of patches that
fail to pass the test suite.

We also found that MemLab fails to run for 37 patches as
shown in the “MemLab Failure” column. The following is the
breakdown of the failures: 34 times due to the time out error;
the tested scenario cannot retrieve a Ul (User Interface) element
within the time limit, and 3 times due to the other errors caused
by the mismatch between the scenario file and the actual web

Authorized licensed use limited to: Korea University. Downloaded on July 22,2025 at 07:29:43 UTC from IEEE Xplore. Restrictions apply.

1986

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 51, NO. 7, JULY 2025

TABLE VII

TEST EXECUTION APPLYING LEAKPAIR TO THE SUBJECTS IN TABLE Il

D Test results before Test results after Elapsed time before| Elapsed time after
applying LEAKPAIR applying LEAKPAIR applying LEAKPAIR | applying LEAKPAIR
Ul N/A N/A N/A N/A
U2 N/A N/A N/A N/A
u3 46 passed of 46 46 passed of 46 8.1s 84s
U4 126 passed of 129 126 passed of 129 03s 03s
us 6 passed of 14 6 passed of 14 39s 145
U6 101 passed of 101 101 passed of 101 55s 56.6 s
u7 66 passed of 66 66 passed of 66 119.835 s 120.835 s
U8 1031 passed of 1038 1031 passed of 1038 41.6 s 43.7 s
U9 43 passed of 43 43 passed of 43 6.5s 6.3 s
Ul10 12 passed of 12 12 passed of 12 03s 03s
Ull N/A N/A N/A N/A
Ul12 N/A N/A N/A N/A
Ul13 N/A N/A N/A N/A
ul4 N/A N/A N/A N/A
Ul5 4272 passed of 4272 4272 passed of 4272 473 s 1 min 184 s
ulé6 788 passed of 788 788 passed of 788 38.8 s 39.8 s
ul1l7 56 passed of 56 56 passed of 56 9s 8.8 s
Ul18 120 passed of 120 120 passed of 120 42's 433 s
u19 164 passed of 164 164 passed of 164 115 s 8.6s
U20| 239 passed, 14 failed of 253 239 passed, 14 failed of 253 46.4 s 416 s
U21 N/A N/A N/A N/A
U22 N/A N/A N/A N/A
U23 18 passed of 18 18 passed of 18 10.6 s 23s
U24|1961 passed, 9 skipped of 1970|1961 passed, 9 skipped of 1970 28.5's 27.7 s
U25 5 failed, 1 passed of 6 5 failed, 1 passed of 6 152 s 16s
U26 N/A N/A N/A N/A
u27 N/A N/A N/A N/A
U28| 444 passed, 1 failed of 445 371 passed, 74 failed of 445 1 min 26.7 s 1 min 28.1 s
U29 44 passed, 1 failed of 45 44 passed, 1 failed of 45 18.6 s 16.7 s
U30 80 passed of 80 total 80 passed of 80 total 29.8 s 11.8 s

Note: The test failures in U28 after repair are due to an obsolete browser. Refer to Section V-C for more details.

TABLE VIII

TEST EXECUTION RESULTS APPLYING LEAKPAIR TO THE SUBJECTS IN TABLE III

Test results before Test results after Elapsed time before | Elapsed time after
ID . . - .

applying LEAKPAIR applying LEAKPAIR applying LEAKPAIR | applying LEAKPAIR
K1 N/A N/A N/A N/A
K2 N/A N/A N/A N/A
K3 14 passed of 14 14 passed of 14 412 s 35s
K4 N/A N/A N/A N/A
K5 1610 passed of 1610 1610 passed of 1610 4s 4
K6 64 passed of 64 64 passed of 64 10.01 s 10.2 s
K7 1656 passed of 1750 1656 passed of 1750 1.5s 1.6 s
K8 275 passed of 277 275 passed of 277 10.582 s 8.549 s
K9 N/A N/A N/A N/A
K10 101 passed of 101 101 passed of 101 3.685 s 3.885 s
K11 62 passed of 62 62 passed of 62 3.7s 22s
K12 N/A N/A N/A N/A
K13 7 passed of 7 7 passed of 7 22s 2s
K14 N/A N/A N/A N/A
K15 64 passed of 64 64 passed of 64 10.6 s 8.6 s
K16| 373 passed, 11 failed of 384 | 373 passed, 11 failed of 384 194 s 21.1s
K17 124 passed of 124 124 passed of 124 10.7 s 11.7 s
K18 244 passed of 244 244 passed of 244 30.1 s 309 s
K19 N/A N/A N/A N/A
K20 21 passed of 21 total 21 passed of 21 total S5s 57s
K21|181 passed, 67 skipped of 248|179 passed, 69 skipped of 248 21.4 min 22.6 min
K22| 163 passing, 3 failing of 166 | 163 passing, 3 failing of 166 3 min 3 min
K23 132 passed of 132 132 passed of 132 02s 02s
K24 9 passed, 1 failed of 10 9 passed, 1 failed of 10 379 s 672 s
K25 192 passed of 192 192 passed of 192 10s 92s
K26 N/A N/A N/A N/A
K27 178 passed of 178 178 passed of 178 345 1.7 s
K28 1 passed of 1 1 passed of 1 28s 45s
K29 N/A N/A N/A N/A
K30 N/A N/A N/A N/A

Authorized licensed use limited to: Korea University. Downloaded on July 22,2025 at 07:29:43 UTC from IEEE Xplore. Restrictions apply.

SHAHOOR et al.: PROACTIVE DEBUGGING OF MEMORY LEAKAGE BUGS IN SINGLE PAGE WEB APPLICATIONS

1987

TABLE IX
MEMORY CONSUMPTION RESULTS BEFORE AND AFTER APPLYING GPT-4 TO THE SUBJECTS IN TABLE III. IN THE FIFTH COLUMN, WE SHOW
THE HEAP SIZES FOR N PATCHED VERSIONS, WHERE N IS EQUAL TO THE NUMBER OF PLAUSIBLE PATCHES (THE 7TH COLUMN) MINUS THE
NUMBER OF PLAUSIBLE PATCHES THAT CAUSE MEMLAB FAILURES (THE 10TH COLUMN). WE USE THE NOTATION X / Y, WHERE X AND Y
REPRESENT THE MEAN VALUE AND STANDARD DEVIATION, RESPECTIVELY. IN THE LAST COLUMN, WE HIGHLIGHT THE CASES WHERE
LEAKPAIR OUTPERFORMS GPT-4 IN TERMS OF HEAP REDUCTION

Project Heap Size File Patch Heap Size Heap Size Plausible | Valid | Run |MemLab | Test Heap Size
ID (Original Version) | ID | Granularity | (Patched Versions) Reduction ‘ Patches |Patches | Failure | Failure |Fails|| Reduction (LEAKPAIR)
K1 28.79 MB | 1 | Function | 28.86 MB/0.23 |-007MB (-02%)| 10 | 1 | 0 | 0 | o 0 MB (0%)
K2 58.53 MB [1] File | 588 MB/0.33 [-0.27 MB (-0.5%) | 6 [1T T 4 7] 0 [0 0.2 MB (0.1%)
K3 The context window size is exceeded. 0.1 MB (1.4%)
K4 The context window size is exceeded. 0 MB (0%)
K5 11.2 MB 1 File - - 0 0 10 0 0 0.1 MB (0.1%)
K6 13.91 MB 1 File 14.03 MB / 0.18 |-0.12 MB (-0.9%) 8 1 2 0 0 0 MB (0%)
K7 9.82 MB 1 Function 9.81 MB /0.03 | 0.01 MB (0.1%) 10 9 0 0 0 0.1 MB (0.2%)

1 File 6579 MB / 1.5 |[-0.84 MB (-1.3%) 8 2 2 0 0
K8 64.95 MB 2 File 6345 MB 7282 | 1.5 MB (23%) 10 6 0 0 0 0.3 MB (0.2%)
K9 31.11 MB 1 Function 31.4 MB / 0.45 |-0.29 MB (-0.9%) 8 3 2 0 0 0 MB (0%)
1 File 10 MB /0 0 MB (0%) 3 0 7 0 0
2 File 10 MB /0 0 MB (0%) 10 0 0 0 0
K10 10 MB 3 File TOMB 70 0 MB (0%) 10 0 0 0 0 0.0 MB (0%)
4 File 10 MB /0 0 MB (0%) 10 0 0 0 0
1 File - - 10 0 0 10 0
K1l 66.2 MB 3 | Function | 6696 MB 7024 |0.76 MB (1.1%)| 10 0 0 1 0 1 MB (0%)
K12 6.66 MB 1 Function 6.68 MB / 0.04 |[-0.02 MB (-0.3%) 10 2 0 1 0 12.3 MB (21.6%)
K13 98.21 MB 1 Function 98.21 MB / 0.03 0 MB (0%) 10 9 0 0 0 0 MB (0%)
K14 26.77 MB 1 Class 26.75 MB / 0.07 | 0.02 MB (0.1%) 2 1 8 0 0 0.0 MB (0%)
1 File 3376 MB / 0.05 |-0.05 MB (-0.1%) 9 3 1 1 0
2 File 342 MB /028 [-0.49 MB (-1.5%) 4 0 6 2 0
K15 33.71 MB 3 File - - 0 0 10 0 0 0.8 MB (2.4 %)
4 File - - 0 0 10 0 0
5 File 3371 MB /0.03 0 MB (0%) 9 8 I 0 0
K16 33.53 MB 1 Function 3334 MB /0.22 | 0.19 MB (0.6%) 9 5 0 4 1 0.1 MB (0.2%)
K17 The context window size is exceeded. 0 MB (0%)
K18 The context window size is exceeded. 0 MB (0%)
K19 2048MB [I | Class | 20.32MB/0.06 JOI6MB(©08% [10 [9 [0 | 0 [0 0.2 MB (3.3%)
K20 There is no atomic patch within the file granularity. 0 MB (0%)
1 Class The context window size is exceeded.
K21 263.65 MB 5 Class - -) 0 0 5 0 0.1 MB (0.03%)
K22 55.4 MB 1 Class 554MB/0 0 MB (0%) 10 0 0 0 0 0.5 MB (0.9%)
1 Class 52.18 MB / 0.04 |-0.38 MB (-0.7%) 10 0 0 1 0
K23 51.8 MB 7T Class S22MB70 |04 MB (:08%) |10 0 0 0 0) 3 (©37)
K24 9.2 MB 1 Function 9.6 MB /0 -0.4 MB (-4.3%) 10 0 0 5 0 0 MB (0%)
K25 The context window size is exceeded. 0 MB (0%)
K26 20.42 MB [T] Class | 204MB/0 [0.02MB (0.1%) | 3 [3 T 0] 1 [7 0 MB (0%)
K27 The context window size is exceeded. 1.6 MB (1.1%)
K28 33.7 MB 1 Class 33.7MB /0 0 MB (0%) 10 0 0 0 0 0 MB (0%)
1 Function 8.36 MB / 0.13 [-0.06 MB (-0.7%) 10 0 0 0 0
K29 8.3 MB 2 Class 839 MB /0.17 [-0.09 MB (-1.1%) 10 0 0 0 0 O LS (@72
K30 21.48 MB 1 File 20.8 MB / 0.57 | 0.68 MB (3.2%) 10 3 0 6 0 2.8 MB (45.3%)
Total | | | | | | 259 | 66 | 63 | 37 | 18|

page; for example, an error occurs when the scenario file refers
to a UI element that does not exist on the web page.

We measure the heap size for the plausible patches. The fifth
column shows the mean value (shown before ‘/’) and standard
deviation (shown after /) of the heap size observed when the
plausible patches are applied. If MemLab fails to run on a
patched project, we exclude that problematic patch from the
heap size measurement. In the “Heap Size Reduction” column,
we compare the second and fifth columns; both the reduced
heap size and reduction ratio are shown. Note that a negative
value represents an increase in the heap size after applying the
patch. Finally, the last column shows the results of LEAKPAIR,
which are the same as those in Table V. This column is to
compare the results of LEAKPAIR with those of GPT-4.

The performance of GPT-4 is not as good as that of
LEAKPAIR. When comparing the sixth and last columns,
LEAKPAIR reduces the heap size more than GPT-4 in 23 subjects

out of 30 subjects. In the table, we highlight the subjects where
LEAKPAIR outperforms GPT-4 in terms of heap size reduction.
Recall that we consider a patch valid if it passes the test suite and
reduces the heap size. Out of 340 generated patches, approxi-
mately 19% of them (66) are found valid. Out of 30 subjects,
14 have at least one valid patch.

We inspect the qualitative aspect of the patches generated by
GPT. For example, the patch generated from GPT-4, shown in
Fig. 8(a), is almost identical with the developer-written patch
shown in Fig. 8(c). However, there is a subtle difference be-
tween the two patches: the developer-written patch includes
the capture OptiOIl in the first tWo removeEventListener calls,
whereas the GPT-4-generated patch does not. The patch gener-
ated by GPT-4 does not remove the event listeners correctly, po-
tentially leading to memory leaks. When removeEventListener
is called, it removes the listener whose event type (the
first argument), listener function (the second argument) and

Authorized licensed use limited to: Korea University. Downloaded on July 22,2025 at 07:29:43 UTC from IEEE Xplore. Restrictions apply.

1988 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 51, NO. 7, JULY 2025

+ this.S$refs.objectViewWrapper.removeEventListener (' dragover’, this.onDragOver);

+ this.$refs.objectViewWrapper.removeEventListener ('drop’, this.editIfEditable);

+ this.S$refs.objectViewWrapper.removeEventListener ('drop’, this.addObjectToParent);

(a) GPT-generated patch

+ this.Srefs.objectViewWrapper.removeEventListener (' dragover’, this.onDragOver, { capture: true });

+ this.S$refs.objectViewWrapper.removeEventListener ('drop’, this.editIfEditable, { capture: true });

+ this.Srefs.objectViewWrapper.removeEventListener ('drop’, this.addObjectToParent);

(b) LEAKPAIR-generated patch
this.$refs.objectViewWrapper.addEventListener (' dragover’, this.onDragOver, { capture: true });
this.Srefs.objectViewWrapper.addEventListener (' drop’, this.editIfEditable, { capture: true });
this.$refs.objectViewWrapper.addEventListener (' drop’, this.addObjectToParent);

+ this.S$refs.objectViewWrapper.removeEventListener (' dragover’, this.onDragOver, { capture: true });
+ this.$refs.objectViewWrapper.removeEventListener ('drop’, this.editIfEditable, { capture: true });
+ this.S$refs.objectViewWrapper.removeEventListener ('drop’, this.addObjectToParent);
(c) Developer-written patch
Fig. 8. Comparison of patches produced by GPT-4, LeakPair, and the developer for the second file of K21.
options (the third argument) all match. The first three lines ! setup()
. . . 2 o ..
of Fig. 8(c) show how the event listeners are added using the | | Beforeunmount (() =>
addeventListener method. Note that the capture 0pt10I1 1S set clearInterval (intervalHandle)) ;
to true in the first tWo addeventListener calls. Since the first 4 e
. . . 5 - setInterval(() => { nextSlide() }, slideSpeed)
two removeEventListener calls in Fig. 8(a) do not ma.tch the | [o{ iitervalHandle — sotInterval (0 =
added listeners, they fail to remove them. In our experiments, nextSlide() }, slideSpeed)
GPT-4 produced the correct patch in only 3 out of 10 trials, de- 7
spite the fact that the three addmventListener calls are included — ° :
in the prompt. In contrast, LEAKPAIR successfully generates the (@) Developer-written patch.
correct patch, as shown in Fig. 8(b), using the FP2 fix pattern. ; setup () |
Recall that the FP2 fix pattern ensures that the arguments passed 5 1 const intervallID = ref();
t0 removeEventListener match those used in the corresponding ¢+ + onBeforeUnmount (() =>
addEventListener calls. i clearInterval (intervalID.value));

As another example, consider Fig. 9, which shows the patch | _ gcttnterval (() => { nextSlide() }, slideSpeed)
for the K24 subject. Memory leaks occur because the 1nterval 7+ intervallD.value = setInterval(() => {
handles created in Line 5 of Fig. 9(a) are not cleared. The . nextSlide () }, slideSpeed)
developer-written patch shown in Fig. 9(a) calls clearinterval o}
in Line 3 to clear the interval handle when the enclosing com- (b) LEAKPAIR-generated patch
ponent is unmounted. LEAKPAIR generates a patch using the | etup () { '
fix pattern FP3b. As shown in Fig. 9(b), the obtained patch -
is semantically the same as the developer-written patch. In 3~ ietlntervall(0 Zi { nextSlide() . }(0 Slidispeed)

. . 4 + let intervalHandle = setlInterva =>
contrast, the GPT-4-generated patch shown in Fig. 9(c) adds nextSlide () }, slideSpeed)

acall to clearinterval in a newly defined function destroy .
However, this patch, while similar to the developer-written one,
does not actually invoke the destroy function, thereby failing
to clear the 1nterval handle. As a result, the GPT-4-generated
patch adds an unused variable intervalnandle and an unused
function destroy , which results in additional memory con-
sumption without fixing the memory leak. GPT-4 often gen-
erates seemingly plausible yet incorrect patches, as shown in
the examples above.

Answer to RQ4: GPT-4 is not as effective as LEAKPAIR
in generating valid patches for memory leaks in SPAs.
LEAKPAIR outperforms GPT-4 in terms of heap size reduc-
tion for 23 subjects out of the 30 subjects we investigated.

@

6 + const destroy () => {
clearInterval (intervalHandle) }

(c) GPT-generated patch.

Fig. 9. Comparison of patches produced by the developer, LeakPair, and
GPT-4 for K24.

VI. DISCUSSION
A. Revisiting the Pull Requests

Looking at the response of the live study (PR submissions),
it is safe to imply that memory leak issues are deemed critical
by the developers; they will readily fix the leaks given that the
actual root cause is identified. Even with no significant heap

Authorized licensed use limited to: Korea University. Downloaded on July 22,2025 at 07:29:43 UTC from IEEE Xplore. Restrictions apply.

SHAHOOR et al.: PROACTIVE DEBUGGING OF MEMORY LEAKAGE BUGS IN SINGLE PAGE WEB APPLICATIONS

reduction, developers remain committed to fixing the leak as
long as the source is identified. This is because most developers
understand that as their application grows, so will the impact
of the leak, even if it seems benign at the current stage.

The temporal difference in the creation dates of the PRs
(Vue in 2024 vs. Angular and React in 2023) likely affects
their approval rates, Vue PRs, being newer, have faced higher
unapproval rates (80%) likely due to insufficient review time.

The analysis of the unapproved PRs reveals that 60% of
them involve changes in more than five files. This suggests a
trend where PRs that modify numerous files could make them
more challenging to review, leading to a greater likelihood of
unapproval or prolonged review periods.

Another significant observation is that 40% of the unap-
proved PRs come from projects with fewer than 10 contributors.
This statistic implies that larger projects, which typically have
more than 10 contributors, may benefit from better-established
review processes and more resources for thorough evaluations.

It is important to note that all the unapproved PRs were
either ignored or closed due to inactivity. None of these PRs
were explicitly rejected based on the quality of the patches
themselves.

B. Intrusive Memory Leak Repair (The Case of Uncleared
Collections)

During the leak-pattern mining process, we found the use of
module/file-scoped collections (sets, arrays) to be quite preva-
lent in SPAs [110], [111], [112], [113], which happened to be
one of the common causes of memory leakage. However, in
SPAs, when a variable is defined outside of a function (within
the file scope), it is unclear when it will no longer be needed.
This causes them to be ignored by the garbage collector, and
they remain in memory long after they are no longer needed.
This may not be an issue for primitive data types such as
strings or integers, but if these variables hold large arrays, their
accumulation over time can easily lead to huge memory leaks.

In SPA frameworks, each ‘page’ or view is rendered by a
separate function or class component. When a SPA executes,
the views (components) are rendered according to the user’s
actions. If a component is written in a file that contains module-
scoped collection(s), then, even after the component unmounts,
the collections defined in the file scope still remain in memory,
unless they are also explicitly cleaned up in the destructors of
the invoked components.

The two potential approaches for cleaning up these module-
level collections are:

1) Clearing them in the destructors of all the components

defined in the file.

2) Moving the collection from the module (file) scope to
the component scope (in a class constructor or function’s
local scope); this way they can be dropped by garbage col-
lection when the class instance is dropped or the function
control is returned.

The first approach is vulnerable to creating intrusive patches;

it may breaks test cases/functionality of the target SPA. The
module-scoped variables are accessible to all components in the

1989

module, which means there will only ever be one instance of
that variable. If there are multiple instances of the component
or multiple components in the same file, they will all be sharing
the value of that variable, so if we clear the collection variable
in the destructors of the component, then the destruction of one
component will affect other instances of the component or other
components in the same file.

The second approach may lead to redundant memory con-
sumption. While moving collection from module scope to com-
ponent scope will ensure garbage collection upon class instance
destruction or return of function control, there will be a lot of
code duplication. As mentioned before, a module (file) may
contain more than one component; moving the collection to a
component means duplicating it in every component defined in
the file. Also, some SPA frameworks, such as React, maintain a
component state, and the component is re-rendered every time
the state changes, which means these huge collections would be
reinitialized every time the component state updates, gobbling
up a lot of memory and slowing the app’s performance.

We believe some trade-off between memory leak prevention
and code bloating is inevitable if we consider the second fix,
since it still preserves functionality but may impact execution
times (performance). Hence, for our current study, we did not
incorporate this pattern, as the aim of our approach is to auto-
mate simple, non-intrusive fixes that neither impact behaviour
nor the performance of the application in any way.

C. Automating Pattern Extraction

I n this work, we manually extracted fix patterns from real
patches to fix memory leaks in SPAs. Considering the demon-
strated effectiveness of our pattern-based approach, one viable
future direction is to automate the extraction of fix patterns.
For instance, common fix patterns could be mined from a large
number of patches that fix memory leaks in SPAs; similar
approaches was used for general program repair tasks [14].
Alternatively, an LLM can be used to fix memory leaks in
SPAs and then extract fix patterns from the generated patches.
However, the poor performance of GPT-4 in our evaluation
questions the feasibility of this approach.

D. Threats to Validity

Threats to external validity may lie in the target subjects
that this study uses as they are open-source projects; thus, the
results may not be representative of projects, such as those using
closed-source techniques. In addition, our study focuses only
on JavaScript subjects, while there are other languages imple-
menting SPAs. This threat might be mitigated since our target
SPA frameworks (i.e., React and Angular) are popular and
representative in the web development community. A nother
related threat is that the fix patterns we extracted may work well
only for the subjects we used in the evaluation. To mitigate the
potential risk of overfitting patterns, we separated the dataset
used for pattern extraction (see Section III-B) from the dataset
used to evaluate the efficacy of the patterns (see Section I'V-B).

Threats to internal validity may include the fix patterns
manually extracted by the authors. To address this threat, each

Authorized licensed use limited to: Korea University. Downloaded on July 22,2025 at 07:29:43 UTC from IEEE Xplore. Restrictions apply.

1990

fix pattern is extrapolated from real patches for memory leaks
in SPAs.

Threats to construct validity may relate to the test cases
used in the evaluation. To show the non-intrusiveness of the
patches generated by LEAKPAIR, our experiment runs test cases
given by each subject. Although test suites may not prove the
correctness of the behavior in the applications, it might be
enough to preserve major functionalities in the applications
from the maintenance perspective. Since we used the regression
test suites provided by the subjects, each subject may have
different levels of test coverage. While adding more test cases
would be desirable, we found it challenging to add new tests
systematically without having domain-specific knowledge on
the subjects. To mitigate this threat, we also ran manual tests
on the subjects to check for any unexpected behavior but did
not find any.

E. Current Limitations

The current implementation of LEAKPAIR applies fix patterns
for individual files and does not handle memory leaks whose
fix require changes across multiple files. For example, if a
fix requires changes in the current file and another file that is
imported by the current file, LEAKPAIR cannot generate a patch.
As another example, memory allocation and deallocation may
occur in different files, and LEAKPAIR cannot generate a patch
in this case.

In SPA frameworks, state management and component
lifecycles introduce additional complexity. In Angular-based
SPAs, for instance, dynamic component creation using
ViewContainerRef OI NgComponentOutlet Can lead to memory
leaks if components are instantiated but not properly destroyed.
Since LEAKPAIR currently analyzes files individually, it does
not track how components interact dynamically or how services
manage shared states across modules. This means that memory
leaks caused by cross-module communication, dynamically
loaded components, or third-party library integrations are not
yet addressed by our implementation.

However, these are implementation limitations rather than
fundamental limitations of our approach. It is feasible to extend
LEAKPAIR by defining and applying cross-file fix patterns, al-
lowing it to detect and resolve memory leaks that span multiple
files.

VII. RELATED WORK

In this section, we will briefly go over the research ef-
forts done in the area of automated memory leak detection
in JavaScript as well as the progression of the applications of
pattern-based automated program repair over the years, what
limitations they encounter and how our approach fares in com-
parison with these techniques.

A. Memory Leak Detection in JavaScript

There have been a number of studies and proposed ap-
proaches presented for the diagnosis and automated detection
of memory leaks in JavaScript, however, they all suffer from

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 51, NO. 7, JULY 2025

certain limitations, which leaves the state-of-the-art still being
the manual analysis of heap snapshots captured at different
points in time. In this section, we will summarize and discuss
5 such leak-detection techniques proposed in the last 7 years,
and their corresponding limitations.

Diagnostic information on DOM objects also helps iden-
tify the source of leaking objects. Jensen et al. presented
Memlnsight [9] in 2015, which makes use of modern browser
elements to provide comprehensive diagnostic information re-
garding DOM elements. It leverages the Jalangi framework to
instrument the source code to produce traces where the memory
of objects causing the leaks is allocated (call trees) and accessed
(access paths). The call tree shows the context of method calls
that assign the leaking object, while access paths define the
series of objects that contain the leaking object, keeping it from
being swept by the garbage collector. MemInsight makes use of
a unique object lifetimes analysis, including an advanced DOM
modelling mechanism, to gauge the time since the object has
gone stale, without leveraging JavaScript’s garbage collector.

This tool, however, fails to provide the exact locations of
the root cause of the leak in the source code; the developer
still has to go through the detailed information and reports
provided by Memlnsight to identify the actual source of the
leak. Moreover, as we explained earlier, approaches based on
staleness are unreliable for memory leak detection, as leaking
objects could still have unwanted references, preventing them
from going stale.

Another work [11] was published in the following year by M.
Rudafshani and P. A. War, based on the same criteria of leak
detection; i.e. object staleness. The tool, called LeakSpot makes
use of a run-time heap model by modifying the application code
in a browser-agnostic way to record object allocations, accesses,
and references. To find the leaked objects and problematic loca-
tions in the code, LeakSpot groups objects based on their alloca-
tion sites (where in the code objects are allocated) or reference
sites (where in the code a reference is created to the objects).
LeakSpot refines the allocation sites by making an allocation-
site graph. It then determines whether the group of objects are
leaked or not based on their corresponding collective-staleness
graphs.

To facilitate debugging and fixing the leaks, for every leaked
object, LeakSpot reports all the locations in the code where
the forgotten references were created. An empirical study con-
ducted by J. Vilk and E. D. Berger [12] revealed that on real
web applications, LeakSpot typically reports over 50 different
allocation and reference sites which developers then have to
manually analyse in order to identify the root cause of the
leak.

A variant of leak detection strategy employs the growth-
based approach. This approach considers the growing usage
of heap memory as an indication of leaking memory. J. Qian
presented a lightweight approach [10] for memory leak diag-
nosis in web applications using this criterion. The proposed
technique obtains a sequence of heap snapshots by executing the
program. These snapshots are parsed and the object reference
graphs embedded in these snapshots are traversed and compared
to locate objects that are newly created.

Authorized licensed use limited to: Korea University. Downloaded on July 22,2025 at 07:29:43 UTC from IEEE Xplore. Restrictions apply.

SHAHOOR et al.: PROACTIVE DEBUGGING OF MEMORY LEAKAGE BUGS IN SINGLE PAGE WEB APPLICATIONS

The newly created objects are groups based on the Similar-
ity Object Count (SOC) heuristic, where each common par-
ent object in the similarity groups represents a candidate leak
root. The memory growth of the candidate leak roots in the
heap snapshot is analysed; if the occupied memory consistently
grows, then that candidate object is regarded as suspicious,
otherwise discarded from the results. The candidate leak roots
are ordered by their occupied memory.

There are 2 limitations to this approach; first, it is a leak
detection method that is entirely manual and extensive. Sec-
ond, the candidate causes of leaks are obtained by gauging
the growth of objects across heap snapshots, however, growth-
based analysis is not always a valid criterion as some growth is
expected and desirable such as that in the cache.

While taking a deviation from growth-based and staleness-
based approaches, Vilk and E. D. Berger attributed sustained
growth of heap between round trips to the same location in
the website, as a gauge for leaking memory. They developed
BLeak [12], an automated leak detection tool whose algorithm
is based on the notion that web app users often return to the
same visual state after performing some actions. The rationale
is that visiting the same visual state should consume almost
the same amount of memory, therefore, if there is sustained
growth in memory consumption (growing objects) between
the loops to the same state, it is a valid indicator of memory
leakage.

BLeak first uses heap differencing to locate locations in a
heap with sustained growth between each round trip, which
it identifies as leak roots. To directly identify the root causes
of growth, BLeak employs JavaScript rewriting to target leak
roots and collect stack traces when they grow. Finally, when
presenting the results to the developer, BLeak ranks leak roots
by return on investment using a novel metric called LeakShare
that prioritizes memory leaks that free the most memory with
the least effort.

However, since it relies on interaction with the website,
BLeak requires a scenario file written on the part of the user, to
be able to run the web app in a headless browser, specifying the
steps to complete the round trip. In addition, it takes around 10
minutes to execute. These 2 factors in our opinion are a major
hindrance in the prevalent usage of this tool.

The latest dynamic approach to leak detection (at the time of
writing), was introduced in late 2022, as Memlab [44], by team
Meta at Facebook. Memlab reports retainer traces of memory
leaks by running the web app in a headless browser. For that, it
needs a scenario file written by the user, just as in the case of
BLeak. Similar to BLeak, the scenario file must contain steps
that complete a full round trip of web interaction.

For each group of leaked objects, Memlab prints one leak
trace, called the retainer trace. The trace is an object reference
from the GC root to the leaked objects. However, the trace, just
like the heap snapshot, is interposed with metadata such as V8
HiddenClasses and class prototypes. The idea is that if the user
follows the trace from the root to the final leaked object, they
should be able to identify the unwanted reference that should
be released (set to null) to break the chain to the root, thereby
fixing the leak.

1991

All the aforementioned approaches are to detect memory
leaks in JavaScript applications. While these tools often pro-
vide debugging information to help developers identify the
root cause of the leak, they do not provide automated fixes.
In contrast, our approach proactively repairs memory leaks in
SPAs without requiring explicit leak detection.

B. Pattern Based Program Repair

The idea of automated program repair based on recurring
patterns mined from real-world projects was first proposed by
Kim et al. [16] in 2013. The authors manually reviewed 60,000
patches from real-world projects, curated the recurring fix pat-
terns and applied them as what was then termed Patch-Based
Automated Program Repair. The approach was evaluated on
253 subjects by comparing the patterns generated by PAR with
those of GenProg [36]. Patches generated by PAR were shown
to have a higher ratio of acceptance by subjects’ developers.

However, in contrast to LEAKPAIR’s straightforward ap-
proach of direct application of non-intrusive patches, PAR de-
pends on first localizing the statements to modify by statistical
fault localization and modifies only those statements that are
visited by failing test cases.

There also have been efforts to employ pattern-based repairs
to repair DOM-related bugs. Vejovis [41], introduced in a study
published in 2014, is one such tool. The study analyzed 190
real-world bug reports to detect recurring fixes to DOM-related
faults. The 2 most common fix categories were found to be
parameter replacements and DOM element validations, which
were then automated in the said tool. Vejovis was evaluated
on 11 subjects, on a total of 22 real-world bugs. Vejovis was
successfully able to repair 20 out of those 22 bugs, 65% of
which were ranked top by the tool as the correct fix.

While this approach is limited to 2 specific DOM-related
bugs, our approach is able to address the general issue of mem-
ory leaks, and can be extended to any memory leak pattern so
long the fix pattern is non-intrusive.

Pattern-based repairs have been applied to target
performance-related bugs such as high resource consumption.
Caramel [35], introduced in 2015, leverages non-intrusive
fix patterns, that are simple, easy to understand, and easily
acceptable to developers to address redundant computations
of loops, which wastes computations and memory. The fix
was fairly straightforward: breaking out of the loop as soon
as the condition became true. Caramel provides a source-level
patch to the user for each bug. The tool was evaluated on 11
and 4 popular Java C/C++ applications respectively. The tool
was able to identify 150 unknown performance bugs across all
subjects, and successfully generate fixes for 149 out of those.
77.3% of the bugs were fixed by developers, at the time of the
publication. However, unlike LEAKPAIR, the fixes generated
by Caramel are documented in a bug report rather than directly
applied in the source code.

Miscellaneous bugs have also been addressed by leveraging
common patterns. In 2018, Liu et al. [42] presented an ap-
proach that extracted code samples from StackOverflow and
then mined 13 fix patterns from them. The fix templates were

Authorized licensed use limited to: Korea University. Downloaded on July 22,2025 at 07:29:43 UTC from IEEE Xplore. Restrictions apply.

1992

implemented in a tool called SOfix, which was evaluated on
the Defects4]J benchmark. The tool was able to repair 23 bugs,
which, at the time of the study, was the highest count of auto-
matically repaired bugs among the contemporary approaches.

The patterns in SOfix, however, are only derived from Stack-
Overflow posts. In contrast, our approach ensures the valid-
ity of the patterns by mining them from merged commits on
GitHub. In addition, the bug patterns targeted by SOfix are mis-
cellaneous, while LEAKPAIR focuses on improving the perfor-
mance of the subject by mitigating overall memory leaks in the
application.

In the same year, Liu et al proved the effectiveness and
efficacy of pattern-based program repair in a study [15], by
developing TBar, a simple template-based APR tool that applies
recurrently used fix patterns on already localized, miscellaneous
bugs. The evaluation was done on the Defects4] benchmark,
and the tool was successfully able to repair 74 out of 101
localized bugs. This, at the time of the study, was a record
performance by a Java APR tool, and the authors expect the
tool to be regarded as a baseline for further developments in
the domain of pattern-based program repair.

TBar, however, does not aim to improve a particular func-
tional or non-functional aspect of the application. Our approach,
in contrast, targets the performance aspect of the application i.e.
memory usage, and was shown to be successful in improving
the state of memory leakage of the applications.

Efforts have also been made to automate the process of min-
ing patterns itself. In 2019, Koyuncu at al. proposed FixMiner
[14] a tool for automatically mining fix patterns, leveraging
a ’three-fold iterative clustering’ strategy, which can then be
utilized by automated patch generation tools. Using the AST
context of the code changes, it tries to cluster the recurring
changes based on their similarity. The tool and its mined patches
were evaluated on already-curated 1000 bugs. FixMiner was
shown to curate accurate and effective patches from open-
source projects. Furthermore, an APR prototype, PARFixMiner,
was developed to implement the patterns curated by FixMiner.
PARFixMiner was successfully able to fix 26 Defects4] bench-
mark bugs, Moreover, 81% of FixMiner’s generated patches
were proved to be correct, showing a high probability of their
correctness.

Though shown to curate accurate and effective patches, it
does not address the automated repair of bugs. LEAKPAIR on
the other hand, does not have automated mining capability but
provides automated repair without requiring prior bug localiza-
tion. We believe these two tools to be complementary to each
other, if not directly comparable.

C. Pattern Based APR Requiring Fault Localization

Some pattern based repair tools rely on the localization of
the bugs to be able to generate the corresponding patch. Jiang
et al’s SimFix [43] is one such tool, that was introduced in
2018. SimFix leverages both existing patches and similar code
to automatically repair programs. The intersection of these 2
search spaces was then searched to find the final fix patterns
for the localized faults. SimFix was evaluated on the Defects4J

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 51, NO. 7, JULY 2025

benchmark and was able to fix 34 bugs which, at the time of
the study was the largest count of bugs fixed by an APR tool on
the benchmark, surpassing SOFix. Furthermore, 13 of the fixes
were fixed for the first time by any APR tool.

Another APR tool assuming fault localization was proposed
in the following year by K. Liu et al, named as AVATAR [50].
The tool leverages patches of static code analysis violations to
generate its own fixes since such patches have already been
systematically assessed by the static detectors and can be relied
on. AVATAR assumes an accurate localization of fault, to be
able to generate the the corresponding patch. The tool was
evaluated on the Defects4] benchmark and was successfully
able to repair 34 of 39 localized bugs. The performance was
compared with the contemporary approaches and was found to
outperform most of them while still being complementary to
most.

Both of these approaches depend on an ordered list of sus-
picious faulty statements using standard fault localization ap-
proaches. Our approach, on the other hand, provides a big edge
over such approaches as it is able to repair bugs without the
prerequisite of localized faults.

D. Usability of Automated Patches

Tao et al. [114] evaluate the impact of auto-generated patches
on debugging effectiveness. In a large-scale human study
involving 95 participants, the study found that high-quality
patches significantly improved debugging correctness. Partic-
ipants appreciated the quick problem identification provided
by generated patches but doubted their effectiveness for com-
plex bugs. The findings emphasize the impracticality of the
direct deployment of automated patches due to readability and
maintainability concerns. Instead, the authors argue that such
auto-generated patches can be useful in aiding debugging by
suggesting potential fixes. Our live study (patch submissions)
results, on the other hand, reveal that developers are much
likely to accept the patches if the fixes are simple, non-intrusive,
and have a noticeable impact (in this case, performance
improvement).

R2Fix [115] is an automated tool designed to generate
patches for software written in C/C++ by analyzing free-form
bug reports. Its main goal is to reduce the time and effort
required for developers to fix bugs, particularly focusing on
buffer overflows, null pointer bugs, and memory leaks. The
tool generates patch suggestions automatically, producing an
average of 1.33 patches per bug report, and developers can
verify and apply these patches directly. Overall, the tool proved
its efficacy in shortening the bug-fixing times by up to 63 days.
Our tool, on the other hand, focuses on improving the perfor-
mance (memory utilization) of web applications by proactively
repairing memory leaking patterns directly in the source code.

VIII. CONCLUSION

In this work, we have introduced a novel technique
LEAKPAIR to fix memory leaks in single page web applications.
Despite the prevalence of single-page web applications and
their memory leaks, there has been no research effort to fix

Authorized licensed use limited to: Korea University. Downloaded on July 22,2025 at 07:29:43 UTC from IEEE Xplore. Restrictions apply.

SHAHOOR et al.: PROACTIVE DEBUGGING OF MEMORY LEAKAGE BUGS IN SINGLE PAGE WEB APPLICATIONS

those bugs automatically. We have shown that by using only a
handful of fix patterns mined from the existing patches, diverse
SPAs of 37 open-source projects can be successfully fixed.
Furthermore, the patches generated by LEAKPAIR are high-
quality (the majority of the pull requests LEAKPAIR made were
accepted by the original developers) and safe to accept (the fix
patterns we use are non-intrusive).

This work also aims at fixing a specific type of bug, i.e., mem-
ory leaks in single-page applications. The proposed technique is
simple as compared to recent approaches. However, simplicity
does not necessarily imply ineffectiveness. On the contrary,
LEAKPAIR is very effective, as was shown. We view this as
the strength of our approach. For certain types of bugs, simple
pattern-based approaches, like ours, do a good job without using
heavy-weight deep learning or implementing complex static
analysis and proving the correctness of the analysis.

DATA AVAILABILITY STATEMENT

We make the replication package publicly available, which
includes all the code and datasets to reproduce our experiments
at https://github.com/Arooba- git/leakpair-study-replication/
[51].

REFERENCES

[1] “roosterjs,” Accessed: Feb. 15, 2023. [Online]. Available:
https://github.com/microsoft/roosterjs/commit/c3f2f0c4d229502c634
e6c99b604df3e5f47b9b6

[2] N. Lazarov, “Memory leaks and memory consumption in
web applications (part 1).” Accessed: Jun. 04, 2024. [Online].
Available: https://www.telerik.com/blogs/memory-leaks-and-memory-
consumption-in-web-applications-part- 1

[3] G. Fink, I. Flatow, and S. E. L. A. Group, Pro Single Page Application
Development: Using Backbone.js and ASPNET. New York, NY, USA:
Apress, May 2014.

[4] K. Lawson, “What are single page applications and why do
people like them so much?” Accessed: Jun. 04, 2024. [On-
line]. Available: https://www.bloomreach.com/en/blog/2018/what-is-a-
single-page-application?spz=article_var

[5] “4 Types of Memory Leaks in JavaScript and How to Get Rid Of
Them,” Accessed: Feb. 15, 2023. [Online]. Available: https://authO.
com/blog/four-types-of-leaks-in-your-javascript-code-and-how-to-
get-rid-of-them

[6] “roosterjs,” Accessed: Feb. 15, 2023. [Online]. Available: https://github.
com/microsoft/roosterjs

[71 “Window: hashchange event - web APIS | MDN,” Accessed: Feb. 15,
2023. [Online]. Available: https://developer.mozilla.org/en-US/docs/
‘Web/APl/Window/hashchange_event

[8] V. Azhari, S. Bhamra, N. Ezzati-Jivan, and F. Tetreault, “Efficient heap
monitoring tool for memory leak detection and root-cause analysis,”
in Proc. IEEE Int. Conf. Big Data (Big Data), Orlando, FL, USA.
Piscataway, NJ, USA: IEEE Press, 2021, pp. 3020-3030.

[9] S. H. Jensen, M. Sridharan, K. Sen, and S. Chandra, “Meminsight:

Platform-independent memory debugging for JavaScript,” in Proc. 10th

Joint Meeting Found. Softw. Eng. (ESEC/FSE), New York, NY, USA:

ACM, 2015, pp. 345-356, doi: 10.1145/2786805.2786860.

J. Qian, L. Wang, and X. Zhou, “A lightweight approach to detect

memory leaks in JavaScript (s),” in Proc. Int. Conf. Softw. Eng.

Knowl. Eng., San Francisco, California, USA: KSI Res. Inc., 07, 2018,

pp. 582-640.

M. Rudafshani and P. A. S. Ward, “Leakspot: Detection and diagnosis

of memory leaks in JavaScript applications,” Softw. Pract. Exper.,

vol. 47, no. 1, pp. 97-123, Jan. 2017, doi: 10.1002/spe.2406.

J. Vilk and E. D. Berger, “Bleak: Automatically debugging memory

leaks in web applications,” Commun. ACM, vol. 63, no. 11, pp. 146—

153, Oct. 2020, doi: 10.1145/3422598.

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]
[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

(35]

[36]

1993

H. D. T. Nguyen, D. Qi, A. Roychoudhury, and S. Chandra, “SemFix:
Program repair via semantic analysis,” in Proc. Int. Conf. Softw. Eng.
(ICSE), Piscataway, NJ, USA: IEEE Press, 2013, pp. 772-781.

A. Koyuncu et al., “Fixminer: Mining relevant fix patterns for auto-
mated program repair,” Empirical Softw. Engg, vol. 25, no. 3, pp. 1980-
2024, May 2020, doi: 10.1007/s10664-019-09780-z.

K. Liu, A. Koyuncu, D. Kim, and T. F. Bissyandé, “Tbar: Revisiting
template-based automated program repair,” in Proc. 28th ACM SIG-
SOFT Int. Symp. Softw. Testing Anal. (ISSTA), New York, NY, USA:
ACM, 2019, pp. 31-42, doi: 10.1145/3293882.3330577.

D. Kim, J. Nam, J. Song, and S. Kim, “Automatic patch generation
learned from human-written patches,” in Proc. 35th Int. Conf. Softw.
Eng. (ICSE), San Francisco, CA, USA. Piscataway, NJ, USA: IEEE
Press, 2013, pp. 802-811.

C. L. Goues, M. Pradel, and A. Roychoudhury, “Automated program
repair,” Commun. ACM, vol. 62, no. 12, pp. 56-65, 2019.

A. Shahoor, A. Y. Khamit, J. Yi, and D. Kim, “Leakpair: Proac-
tive repairing of memory leaks in single page web applications,” in
Proc. 38th IEEE/ACM Int. Conf. Automated Softw. Eng. (ASE), Sep.
2023, pp. 1175-1187. [Online]. Available: https://ieeexplore.ieee.org/
document/10298488

“Angular,” Accessed: Mar. 13, 2024. [Online]. Available: https:/
angular.io

“React,” Accessed: Mar. 13, 2024. [Online]. Available: https://react.dev
“GPT-4,” Accessed: Sep. 04, 2024. [Online]. Available: https://openai.
com/index/gpt-4/

C. S. Xia and L. Zhang, “Automated program repair via conversation:
Fixing 162 out of 337 Bugs for $0.42 Each using ChatGPT,” in
Proc. 33rd ACM SIGSOFT Int. Symp. Softw. Testing Anal. Vienna
Austria. New York, NY, USA: ACM, Sep. 2024, pp. 819-831, doi:
10.1145/3650212.3680323.

“Feb, Garbage collection in redux applications,” Accessed: Apr.
8, 2024. [Online]. Available: https://developers.soundcloud.com/blog/
garbage-collection-in-redux-applications

“Redux - A JS library for predictable and maintainable global state
management| Redux,” Accessed: Apr. 8, 2024. [Online]. Available:
https://redux.js.org

“Introducing fuite: a tool for finding memory leaks in web apps,”
Accessed: Feb. 15, 2023. [Online]. Available: https://nolanlawson.
com/2021/12/17/introducing-fuite- a-tool-for-finding-memory-leaks-
in-web-apps

“A tour of V8: Garbage collection,” Accessed: Feb. 15, 2023. [On-
line]. Available: https://jayconrod.com/posts/55/a-tour-of-v8--garbage-
collection

“Pomodore-discord-bot,” Accessed: Feb. 15, 2023. [Online]. Available:
https://github.com/MarcoPereira27/pomodore-discord-bot/issues/4
“Strange Nodejs memory leak,” Accessed: Feb. 15, 2023. [Online].
Available: https://stackoverflow.com/questions/63661738/strange-
nodejs-memory-leak

“angular,” Accessed: Feb. 15, 2023. [Online]. Available: https://github.
com/angular/angular/issues/27803

“Solving memory leaks in large react application,” Accessed: Feb.
15, 2023. [Online]. Available: https://stackoverflow.com/questions/
63813604/solving-memory-leaks-in-large-react-application

“angular,” Accessed: Feb. 15, 2023. [Online]. Available: https://github.
com/angular/angular/issues/20007

“BloatBusters - WebPerfDays,” Accessed: Aug. 31, 2023. [Online].
Available: https://docs.google.com/presentation/d/ I wUVmf78gG-
ra5aOxvT{YdiLkdGaR9OhXRnOlIcEmu2s/edit#slide=id.g1d65bdf6_
0_0

Taub, C. “How we resolved a memory leak on our website,”
DEV Community, May 2021. Accessed: Aug. 13, 2023. [Online].
Available: https://dev.to/fiit/how-we-resolved-a-memory-leak-on-our-
website- 1kf0

Msedgeteam, “The heap snapshot file format - Microsoft Edge
Development,” Accessed: Aug. 31, 2023. [Online]. Available: https:/
learn.microsoft.com/en-us/microsoft-edge/devtools- guide-chromium/
memory-problems/heap-snapshot-schema

A. Nistor, P.-C. Chang, C. Radoi, and S. Lu, “Caramel: Detecting and
fixing performance problems that have non-intrusive fixes,” in Proc.
37th Int. Conf. Softw. Eng. (ICSE), vol. 1. Piscataway, NJ, USA: IEEE
Press, 2015, pp. 902-912.

W. Weimer, T. Nguyen, C. L. Goues, and S. Forrest, “Automatically
finding patches using genetic programming,” in Proc. 31st Int. Conf.
Softw. Eng. (ICSE), Los Alamitos, CA, USA: IEEE Comput. Soc. Press,
2009, pp. 364-374.

Authorized licensed use limited to: Korea University. Downloaded on July 22,2025 at 07:29:43 UTC from IEEE Xplore. Restrictions apply.

https://github.com/Arooba-git/leakpair-study-replication/
https://github.com/microsoft/roosterjs/commit/c3f2f0c4d229502c634e6c99b604df3e5f47b9b6
https://github.com/microsoft/roosterjs/commit/c3f2f0c4d229502c634e6c99b604df3e5f47b9b6
https://www.telerik.com/blogs/memory-leaks-and-memory-consumption-in-web-applications-part-1
https://www.telerik.com/blogs/memory-leaks-and-memory-consumption-in-web-applications-part-1
https://www.bloomreach.com/en/blog/2018/what-is-a-single-page-application?spz=article_var
https://www.bloomreach.com/en/blog/2018/what-is-a-single-page-application?spz=article_var
https://auth0.com/blog/four-types-of-leaks-in-your-javascript-code-and-how-to-get-rid-of-them
https://auth0.com/blog/four-types-of-leaks-in-your-javascript-code-and-how-to-get-rid-of-them
https://auth0.com/blog/four-types-of-leaks-in-your-javascript-code-and-how-to-get-rid-of-them
https://github.com/microsoft/roosterjs
https://github.com/microsoft/roosterjs
https://developer.mozilla.org/en-US/docs/Web/API/Window/hashchange_event
https://developer.mozilla.org/en-US/docs/Web/API/Window/hashchange_event
http://dx.doi.org/10.1145/2786805.2786860.
http://dx.doi.org/10.1002/spe.2406
http://dx.doi.org/10.1145/3422598
http://dx.doi.org/10.1007/s10664-019-09780-z
http://dx.doi.org/10.1145/3293882.3330577.
https://ieeexplore.ieee.org/document/10298488
https://ieeexplore.ieee.org/document/10298488
https://angular.io
https://angular.io
https://react.dev
https://openai.com/index/gpt-4/
https://openai.com/index/gpt-4/
http://dx.doi.org/10.1145/3650212.3680323
https://developers.soundcloud.com/blog/garbage-collection-in-redux-applications
https://developers.soundcloud.com/blog/garbage-collection-in-redux-applications
https://redux.js.org
https://nolanlawson.com/2021/12/17/introducing-fuite-a-tool-for-finding-memory-leaks-in-web-apps
https://nolanlawson.com/2021/12/17/introducing-fuite-a-tool-for-finding-memory-leaks-in-web-apps
https://nolanlawson.com/2021/12/17/introducing-fuite-a-tool-for-finding-memory-leaks-in-web-apps
https://jayconrod.com/posts/55/a-tour-of-v8--garbage-collection
https://jayconrod.com/posts/55/a-tour-of-v8--garbage-collection
https://github.com/MarcoPereira27/pomodore-discord-bot/issues/4
https://stackoverflow.com/questions/63661738/strange-nodejs-memory-leak
https://stackoverflow.com/questions/63661738/strange-nodejs-memory-leak
https://github.com/angular/angular/issues/27803
https://github.com/angular/angular/issues/27803
https://stackoverflow.com/questions/63813604/solving-memory-leaks-in-large-react-application
https://stackoverflow.com/questions/63813604/solving-memory-leaks-in-large-react-application
https://github.com/angular/angular/issues/20007
https://github.com/angular/angular/issues/20007
https://docs.google.com/presentation/d/1wUVmf78gG-ra5aOxvTfYdiLkdGaR9OhXRnOlIcEmu2s/edit#slide=id.g1d65bdf6_0_0
https://docs.google.com/presentation/d/1wUVmf78gG-ra5aOxvTfYdiLkdGaR9OhXRnOlIcEmu2s/edit#slide=id.g1d65bdf6_0_0
https://docs.google.com/presentation/d/1wUVmf78gG-ra5aOxvTfYdiLkdGaR9OhXRnOlIcEmu2s/edit#slide=id.g1d65bdf6_0_0
https://dev.to/fiit/how-we-resolved-a-memory-leak-on-our-website-1kf0
https://dev.to/fiit/how-we-resolved-a-memory-leak-on-our-website-1kf0
https://learn.microsoft.com/en-us/microsoft-edge/devtools-guide-chromium/memory-problems/heap-snapshot-schema
https://learn.microsoft.com/en-us/microsoft-edge/devtools-guide-chromium/memory-problems/heap-snapshot-schema
https://learn.microsoft.com/en-us/microsoft-edge/devtools-guide-chromium/memory-problems/heap-snapshot-schema

1994

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]
[46]

[47]

(48]

[49]

[50]

[51]

[52]
[53]
[54]
[55]
[56]
(571
[58]
[59]
[60]
[61]
[62]

[63]

Q. Zhu et al., “A syntax-guided edit decoder for neural program repair,”
in Proc. ACM Joint Meeting Eur. Softw. Eng. Conf. Symp. Found. Softw.
Eng., New York, NY, USA: ACM, Aug. 2021, pp. 341-353.

T. Lutellier, H. V. Pham, L. Pang, Y. Li, M. Wei, and L. Tan,
“CoCoNuT: combining context-aware neural translation models using
ensemble for program repair,” in Proc. 29th ACM SIGSOFT Int. Symp.
Softw. Testing Anal., Virtual Event USA, New York, NY, USA: ACM,
Jul. 2020, pp. 101-114, doi: 10.1145/3395363.3397369.

R. van Tonder and C. L. Goues, “Static automated program repair for
heap properties,” in Proc. 40th Int. Conf. Softw. Eng., 2018, pp. 151—
162.

S. Hong, J. Lee, J. Lee, and H. Oh, “SAVER: Scalable, precise, and
safe memory-error repair,” in Proc. ACM/IEEE 42nd Int. Conf. Softw.
Eng., 2020, pp. 271-283.

F. S. Ocariza, Jr., K. Pattabiraman, and A. Mesbah, “Vejovis: Sug-
gesting fixes for JavaScript faults,” in Proc. 36th Int. Conf. Softw.
Eng. (ICSE), New York, NY, USA: ACM, 2014, pp. 837-847, doi:
10.1145/2568225.2568257.

X. Liu and H. Zhong, “Mining stackoverflow for program repair,”
in Proc. IEEE 25th Int. Conf. Softw. Anal., Evol. Reeng. (SANER),
Campobasso, Italy. Piscataway, NJ, USA: IEEE Press, 2018, pp. 118—
129.

J. Jiang, Y. Xiong, H. Zhang, Q. Gao, and X. Chen, “Shaping program
repair space with existing patches and similar code,” in Proc. 27th
ACM SIGSOFT Int. Symp. Softw. Test. Anal. (ISSTA), New York, NY,
USA: ACM, 2018, pp. 298-309, doi: 10.1145/3213846.3213871.

G. C. Liang Gong, “MemLab: An open source framework for finding
JavaScript memory leaks,” Eng. Meta, Oct. 2022. Accessed: Jan. 03,
2025. [Online]. Available: https://engineering.fb.com/2022/09/12/open-
source/memlab

“RxJS - Observable,” Accessed: Feb. 16, 2023. [Online]. Available:
https://rxjs.dev/guide/observable

“RxJS - takeUntil,” Accessed: Feb. 16, 2023. [Online]. Available:
https://rxjs.dev/api/operators/takeUntil

“Codecademy,” Accessed: Feb. 17, 2023. [Online]. Available:
https://www.codecademy.com/courses/react- 101/lessons/component-
lifecycle- methods/exercises/componentwillunmount
Window.requestAnimationFrame() - Web APIs | MDN. Accessed:
Feb. 17, 2023. [Online]. Available: https://developer.mozilla.org/en-US/
docs/Web/APl/window/requestAnimationFrame

“Events API | Vue 3 Migration Guide,” Accessed: Jan. 4, 2024.
[Online]. Available: https://v3-migration.vuejs.org/breaking-changes/
events-api.html

K. Liu, A. Koyuncu, D. Kim, and T. F. Bissyande, “Avatar: Fix-
ing semantic bugs with fix patterns of static analysis violations,”
in Proc. IEEE 26th Int. Conf. Softw. Anal., Evol. Reeng. (SANER),
Los Alamitos, CA, USA: IEEE Computer Soc., Feb. 2019, pp. 1-
12. [Online]. Available: https://doi.ieeecomputersociety.org/10.1109/
SANER.2019.8667970

“Mar, leakpair-study-replication,” 2024. Accessed: Mar. 13, 2024.
[Online]. Available: https://github.com/Arooba-git/leakpair-study-
replication/tree/main

“Babel - The Compiler for Next Gener. JavaScript,” vol. 17, p. 2023,
Accessed: Jul. 13, 2022. [Online]. Available: https://babeljs.io
“jscodeshift,” Accessed: Feb. 16, 2023. [Online]. Available: https:/
github.com/facebook/jscodeshift

“recast,” Accessed: Feb. 16, 2023. [Online]. Available: https://github.
com/benjamn/recast

“react-zoom-pan-pinch,” Accessed: Feb. 15, 2023. [Online]. Available:
https://github.com/prc5/react-zoom-pan-pinch/pull/270/commits
“angular-components,” Accessed: Feb. 16, 2023. [Online]. Available:
https://github.com/angular/components

“evergreen,” Accessed: Feb. 16, 2023. [Online]. Available: https:/
github.com/segmentio/evergreen

“ngx-datatable,” Accessed: Feb. 16, 2023. [Online]. Available: https:/
github.com/swimlane/ngx-datatable

“react-multi-carousel,” Accessed: Feb. 16, 2023. [Online]. Available:
https://github.com/YIZHUANG/react-multi- carousel

“angular-UI,” Accessed: Feb. 16, 2023. [Online]. Available: https://
github.com/DetektivKollektiv/angular-ui

“retail-UL,” Accessed: Feb. 16, 2023. [Online]. Available: https://github.
com/skbkontur/retail-ui/tree/retail-ui%401.11.1

“NDB-core,” Accessed: Feb. 16, 2023. [Online]. Available: https:/
github.com/Aam-Digital/ndb-core

“DevTools,” Accessed: Feb. 16, 2023. [Online]. Available: https:/
github.com/replayio/devtools

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 51, NO. 7, JULY 2025

[64]
[65]
[66]
[67]
[68]
[69]
[70]
[71]
[72]
(73]
[74]
[75]
[76]
[77]
[78]
[79]
[80]
[81]
[82]
[83]
[84]
[85]
[86]
[87]
[88]
[89]

[90]

[91]

[92]

[93]
[94]

[95]

[96]

(971

“ngx-bootstrap,” Accessed: Feb. 16, 2023. [Online]. Available: https://
github.com/valor-software/ngx-bootstrap

“DefiChain-income,” Accessed: Oct. 1, 2023. [Online]. Available:
https://github.com/rogi-sh/defichain-income

“collosal,” Accessed: Oct. 1, 2023. [Online]. Available: https://github.
com/iceboy1406/collosal

“tbt-website,” Accessed: Oct. 1, 2023. [Online]. Available: https:/
github.com/tbtMEC/tbt- website

“mempool,” Accessed: Sep. 30, 2023. Available: https://github.com/
mempool/mempool

“DSpace-angular,” Accessed: Oct. 1, 2023. [Online]. Available: https://
github.com/DSpace/dspace-angular

“PrimeNG,” Accessed: Oct. 1, 2023. [Online]. Available: https://github.
com/primefaces/primeng

“NGX-formly,” Accessed: Oct. 1, 2023. [Online]. Available: https:/
github.com/ngx-formly/ngx-formly

“studio,” Accessed: Oct. 1, 2023. [Online]. Available: https://github.
com/foxglove/studio

“BootstrapVue,” Accessed: Jan. 1, 2024. [Online]. Available: https:/
github.com/bootstrap-vue/bootstrap-vue

“chatwoot,” Accessed: Jan. 1, 2024. [Online]. Available: https://github.
com/chatwoot/chatwoot

“think-vuele,” Accessed: Jan. 1, 2024. [Online]. Available: https://
github.com/chfree/think-vuele

“vue-admin-better,” Accessed: Jan. 1, 2024. [Online]. Available: https:/
github.com/chuzhixin/vue-admin-better?tab=readme- ov-file
“vue-grid-layout,” Accessed: Jan. 1, 2024. [Online]. Available: https://
github.com/jbaysolutions/vue-grid-layout

“weaverbird,” Accessed: Jan. 1, 2024. [Online]. Available: https:/
github.com/ToucanToco/weaverbird

“auto-animate,” Accessed: Jan. 1, 2024. [Online]. Available: https:/
github.com/formkit/auto-animate

“vue-snap,” Accessed: Jan. 1, 2024. [Online]. Available: https://github.
com/bartdominiak/vue-snap

“element,” Accessed: Jan. 1, 2024. [Online]. Available: https://github.
com/ElemeFE/element

“lan-ui,” Accessed: Jan. 1, 2024. [Online]. Available: https://github.
com/lan-ui/lan-ui

“IVIEW,” Accessed: Jan. 1, 2024. [Online]. Available: https://github.
com/iview/iview

“buefy,” Accessed: Jan. 1, 2024. [Online]. Available: https:/github.
com/buefy/buefy

“fundamental-NGX,” Accessed: Feb. 16, 2023. [Online]. Available:
https://github.com/S AP/fundamental-ngx

“material-UI,” Accessed: Feb. 16, 2023. [Online]. Available: https:/
github.com/mui/material-ui

“material.angular.io,” Accessed: Feb. 16, 2023. [Online]. Available:
https://github.com/angular/material.angular.io

“octant,” Accessed: Feb. 16, 2023. [Online]. Available: https://github.
com/vmware-archive/octant

“transloco,” Accessed: Feb. 16, 2023. [Online]. Available: https:/
github.com/ngneat/transloco/pull/65/files

“Fix memory leaks by Louptheron - Pull Request #953 - MTES-
MCT/monitorfish,” Accessed: Sep. 30, 2023. [Online]. Available:
https://github.com/MTES-MCT/monitorfish/pull/953/commits/
1dc01c0d82261bf05277366d954fa5d912632091
“react-customizable-progressbar,” Accessed: Sep. 30, 2023. [Online].
Available: https://github.com/martyan/react-customizable-progressbar
“fixed useEffect memory leak error by yoon-bbox - Pull Request #49 -
BalloonBox-Inc/scrt-network-oracle-client,” Accessed: Sep. 30, 2023.
[Online]. Available: https://github.com/BalloonBox-Inc/scrt-network-
oracle-client/pull/49/commits

“website,” Accessed: Oct. 1, 2023. [Online]. Available: https://github.
com/momentum-mod/website

“patternfly-react,” Accessed: Oct. 1, 2023. [Online]. Available: https://
github.com/patternfly/patternfly-react

“fix: input refocused after blur by ThanoozN - Pull Request #541 - s-
yadav/react-number-format,” Accessed: Oct. 1, 2023. [Online]. Avail-
able: https://github.com/s-yadav/react-number-format/pull/541/files
“Fix missing clear timeout by tjbo - Pull Request #731 - helpscout/hsds-
react,” Accessed: Oct. 1, 2023. [Online]. Available: https://github.com/
helpscout/hsds-react/pull/731/files

“Fix bugs and styling by edreichua - Pull Request #233 - dartmouth-
cs98/project-dartmap,” Accessed: Oct. 1, 2023. [Online]. Available:
https://github.com/dartmouth-cs98/project-dartmap/pull/233/files

Authorized licensed use limited to: Korea University. Downloaded on July 22,2025 at 07:29:43 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1145/3395363.3397369
http://dx.doi.org/10.1145/2568225.2568257.
http://dx.doi.org/10.1145/3213846.3213871.
https://engineering.fb.com/2022/09/12/open-source/memlab
https://engineering.fb.com/2022/09/12/open-source/memlab
https://rxjs.dev/guide/observable
https://rxjs.dev/api/operators/takeUntil
https://www.codecademy.com/courses/react-101/lessons/component-lifecycle-methods/exercises/componentwillunmount
https://www.codecademy.com/courses/react-101/lessons/component-lifecycle-methods/exercises/componentwillunmount
https://developer.mozilla.org/en-US/docs/Web/API/window/requestAnimationFrame
https://developer.mozilla.org/en-US/docs/Web/API/window/requestAnimationFrame
https://v3-migration.vuejs.org/breaking-changes/events-api.html
https://v3-migration.vuejs.org/breaking-changes/events-api.html
https://doi.ieeecomputersociety.org/10.1109/SANER.2019.8667970
https://doi.ieeecomputersociety.org/10.1109/SANER.2019.8667970
https://github.com/Arooba-git/leakpair-study-replication/tree/main
https://github.com/Arooba-git/leakpair-study-replication/tree/main
https://babeljs.io
https://github.com/facebook/jscodeshift
https://github.com/facebook/jscodeshift
https://github.com/benjamn/recast
https://github.com/benjamn/recast
https://github.com/prc5/react-zoom-pan-pinch/pull/270/commits
https://github.com/angular/components
https://github.com/segmentio/evergreen
https://github.com/segmentio/evergreen
https://github.com/swimlane/ngx-datatable
https://github.com/swimlane/ngx-datatable
https://github.com/YIZHUANG/react-multi-carousel
https://github.com/DetektivKollektiv/angular-ui
https://github.com/DetektivKollektiv/angular-ui
https://github.com/skbkontur/retail-ui/tree/retail-ui%401.11.1
https://github.com/skbkontur/retail-ui/tree/retail-ui%401.11.1
https://github.com/Aam-Digital/ndb-core
https://github.com/Aam-Digital/ndb-core
https://github.com/replayio/devtools
https://github.com/replayio/devtools
https://github.com/valor-software/ngx-bootstrap
https://github.com/valor-software/ngx-bootstrap
https://github.com/rogi-sh/defichain-income
https://github.com/iceboy1406/collosal
https://github.com/iceboy1406/collosal
https://github.com/tbtMEC/tbt-website
https://github.com/tbtMEC/tbt-website
https://github.com/mempool/mempool
https://github.com/mempool/mempool
https://github.com/DSpace/dspace-angular
https://github.com/DSpace/dspace-angular
https://github.com/primefaces/primeng
https://github.com/primefaces/primeng
https://github.com/ngx-formly/ngx-formly
https://github.com/ngx-formly/ngx-formly
https://github.com/foxglove/studio
https://github.com/foxglove/studio
https://github.com/bootstrap-vue/bootstrap-vue
https://github.com/bootstrap-vue/bootstrap-vue
https://github.com/chatwoot/chatwoot
https://github.com/chatwoot/chatwoot
https://github.com/chfree/think-vuele
https://github.com/chfree/think-vuele
https://github.com/chuzhixin/vue-admin-better?tab=readme-ov-file
https://github.com/chuzhixin/vue-admin-better?tab=readme-ov-file
https://github.com/jbaysolutions/vue-grid-layout
https://github.com/jbaysolutions/vue-grid-layout
https://github.com/ToucanToco/weaverbird
https://github.com/ToucanToco/weaverbird
https://github.com/formkit/auto-animate
https://github.com/formkit/auto-animate
https://github.com/bartdominiak/vue-snap
https://github.com/bartdominiak/vue-snap
https://github.com/ElemeFE/element
https://github.com/ElemeFE/element
https://github.com/lan-ui/lan-ui
https://github.com/lan-ui/lan-ui
https://github.com/iview/iview
https://github.com/iview/iview
https://github.com/buefy/buefy
https://github.com/buefy/buefy
https://github.com/SAP/fundamental-ngx
https://github.com/mui/material-ui
https://github.com/mui/material-ui
https://github.com/angular/material.angular.io
https://github.com/vmware-archive/octant
https://github.com/vmware-archive/octant
https://github.com/ngneat/transloco/pull/65/files
https://github.com/ngneat/transloco/pull/65/files
https://github.com/MTES-MCT/monitorfish/pull/953/commits/1dc01c0d82261bf05277366d954fa5d912632091
https://github.com/MTES-MCT/monitorfish/pull/953/commits/1dc01c0d82261bf05277366d954fa5d912632091
https://github.com/martyan/react-customizable-progressbar
https://github.com/BalloonBox-Inc/scrt-network-oracle-client/pull/49/commits
https://github.com/BalloonBox-Inc/scrt-network-oracle-client/pull/49/commits
https://github.com/momentum-mod/website
https://github.com/momentum-mod/website
https://github.com/patternfly/patternfly-react
https://github.com/patternfly/patternfly-react
https://github.com/s-yadav/react-number-format/pull/541/files
https://github.com/helpscout/hsds-react/pull/731/files
https://github.com/helpscout/hsds-react/pull/731/files
https://github.com/dartmouth-cs98/project-dartmap/pull/233/files

SHAHOOR et al.: PROACTIVE DEBUGGING OF MEMORY LEAKAGE BUGS IN SINGLE PAGE WEB APPLICATIONS

[98]

[99]
[100]
[101]
[102]
[103]
[104]
[105]
[106]

[107]

“Vue-tree,” Accessed: Jan. 13, 2024. [Online]. Available: https://github.
com/wsfe/vue-tree

“openMCT,” Accessed: Jan. 1, 2024. [Online]. Available: https://github.
com/nasa/openmct

“CLRfund,” Accessed: Jan. 1, 2024. [Online]. Available: https://github.
com/ethereum/clrfund

“web-mapviewer,” Accessed: Jan. 1, 2024. [Online]. Available: https://
github.com/geoadmin/web-mapviewer

“Instalog,” Accessed: Jan. 1, 2024. [Online]. Available: https://github.
com/GeekAbdou/InstalLog

“n8n,” Jan. 2024. Accessed: Jan. 1, 2024. [Online]. Available: https:/
github.com/n8n-io/n8n

“UL” Accessed: Jan. 1, 2024. [Online]. Available: https://github.com/
PrefectHQ/ui

“pycontw-frontend,” Accessed: Jan. 1, 2024. [Online]. Available:
https://github.com/pycontw/pycontw-frontend

“J. 2nfm, ” Accessed: Jan. 1, 2024. [Online]. Available: https://github.
com/codysherman/2nfm

“docs,” Accessed: Jan. 1, 2024. [Online]. Available: https://github.com/
vuejs/docs

[108]

[109]

[110]
[111]
[112]
[113]

[114]

[115]

1995

H. B. Mann, “On a test of whether one of two random variables is
stochastically larger than the other,” Ann. Math. Statist., vol. 18, no. 1,
pp. 50-60, Mar. 1947.

“AbortController - Web APIs | MDN,” Accessed: Mar. 13, 2024. [On-
line]. Available: https://developer.mozilla.org/en-US/docs/Web/APl/
AbortController#fbrowser_compatibility

“ng-clarity,” Accessed: Feb. 11, 2024. [Online]. Available: https:/
github.com/vmware-clarity/ng-clarity

“octant,” Accessed: Sep. 24, 2023. [Online]. Available: https://github.
com/vmware-archive/octant

“Patternfly-react,” Accessed: Sep. 24, 2023. [Online]. Available: https:/
github.com/patternfly/patternfly-react

“retail-Ul,” Accessed: Sep. 24, 2023. [Online]. Available: https://github.
com/skbkontur/retail-ui

Y. Tao, J. Kim, S. Kim, and C. Xu, “Automatically generated patches
as debugging aids: a human study,” in Proc. 22nd ACM SIGSOFT Int.
Symp. Found. Softw. Eng. (FSE), New York, NY, USA: ACM, 2014,
pp. 64-74, doi: 10.1145/2635868.2635873.

“IEEE xplore full-text pdf:,” Accessed: Jul. 16, 2024. [Online].
Available: https://ieeexplore.ieee.org/stamp/stamp.jsp ?tp=&
arnumber=6569740&tag=1

Authorized licensed use limited to: Korea University. Downloaded on July 22,2025 at 07:29:43 UTC from IEEE Xplore. Restrictions apply.

https://github.com/wsfe/vue-tree
https://github.com/wsfe/vue-tree
https://github.com/nasa/openmct
https://github.com/nasa/openmct
https://github.com/ethereum/clrfund
https://github.com/ethereum/clrfund
https://github.com/geoadmin/web-mapviewer
https://github.com/geoadmin/web-mapviewer
https://github.com/GeekAbdou/InstaLog
https://github.com/GeekAbdou/InstaLog
https://github.com/n8n-io/n8n
https://github.com/n8n-io/n8n
https://github.com/PrefectHQ/ui
https://github.com/PrefectHQ/ui
https://github.com/pycontw/pycontw-frontend
https://github.com/codysherman/2nfm
https://github.com/codysherman/2nfm
https://github.com/vuejs/docs
https://github.com/vuejs/docs
https://developer.mozilla.org/en-US/docs/Web/API/AbortController#browser_compatibility
https://developer.mozilla.org/en-US/docs/Web/API/AbortController#browser_compatibility
https://github.com/vmware-clarity/ng-clarity
https://github.com/vmware-clarity/ng-clarity
https://github.com/vmware-archive/octant
https://github.com/vmware-archive/octant
https://github.com/patternfly/patternfly-react
https://github.com/patternfly/patternfly-react
https://github.com/skbkontur/retail-ui
https://github.com/skbkontur/retail-ui
http://dx.doi.org/10.1145/2635868.2635873.
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6569740&tag=1
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6569740&tag=1

<<
	/CompressObjects /Off
	/ParseDSCCommentsForDocInfo false
	/CreateJobTicket false
	/PDFX1aCheck false
	/ColorImageMinResolution 200
	/GrayImageResolution 300
	/DoThumbnails false
	/ColorConversionStrategy /sRGB
	/GrayImageFilter /DCTEncode
	/EmbedAllFonts true
	/CalRGBProfile (Adobe RGB \0501998\051)
	/MonoImageMinResolutionPolicy /OK
	/AllowPSXObjects false
	/LockDistillerParams true
	/ImageMemory 1048576
	/DownsampleMonoImages true
	/ColorSettingsFile (None)
	/PassThroughJPEGImages true
	/AutoRotatePages /None
	/Optimize false
	/ParseDSCComments false
	/MonoImageDepth -1
	/AntiAliasGrayImages false
	/GrayImageMinResolutionPolicy /OK
	/JPEG2000ColorImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/ConvertImagesToIndexed true
	/MaxSubsetPct 100
	/Binding /Left
	/PreserveDICMYKValues false
	/GrayImageMinDownsampleDepth 2
	/MonoImageMinResolution 400
	/sRGBProfile (sRGB IEC61966-2.1)
	/AntiAliasColorImages false
	/GrayImageDepth -1
	/PreserveFlatness false
	/OtherNamespaces [
		<<
			/IncludeSlug false
			/CropImagesToFrames true
			/IncludeNonPrinting false
			/OmitPlacedBitmaps false
			/AsReaderSpreads false
			/Namespace [
				(Adobe)
				(InDesign)
				(4.0)
]
			/FlattenerIgnoreSpreadOverrides false
			/OmitPlacedEPS false
			/OmitPlacedPDF false
			/SimulateOverprint /Legacy
			/IncludeGuidesGrids false
			/ErrorControl /WarnAndContinue
		>>
		<<
			/IgnoreHTMLPageBreaks false
			/IncludeHeaderFooter false
			/AllowTableBreaks true
			/UseHTMLTitleAsMetadata true
			/MetadataTitle /
			/ShrinkContent true
			/UseEmbeddedProfiles false
			/TreatColorsAs /MainMonitorColors
			/MetricUnit /inch
			/RemoveBackground false
			/HonorBaseURL true
			/ExpandPage false
			/AllowImageBreaks true
			/MetadataSubject /
			/MarginOffset [
				0.0
				0.0
				0.0
				0.0
]
			/Namespace [
				(Adobe)
				(GoLive)
				(8.0)
]
			/OpenZoomToHTMLFontSize false
			/PageOrientation /Portrait
			/MetadataAuthor /
			/MobileCompatible 0.0
			/MetadataKeywords /
			/MetricPageSize [
				0.0
				0.0
]
			/HonorRolloverEffect false
		>>
		<<
			/IncludeProfiles true
			/ConvertColors /NoConversion
			/FormElements true
			/MarksOffset 6.0
			/FlattenerPreset <<
				/PresetSelector /MediumResolution
			>>
			/DestinationProfileSelector /UseName
			/MultimediaHandling /UseObjectSettings
			/PreserveEditing true
			/PDFXOutputIntentProfileSelector /UseName
			/BleedOffset [
				0.0
				0.0
				0.0
				0.0
]
			/UntaggedRGBHandling /LeaveUntagged
			/GenerateStructure false
			/AddRegMarks false
			/IncludeHyperlinks false
			/IncludeBookmarks false
			/MarksWeight 0.25
			/PageMarksFile /RomanDefault
			/UntaggedCMYKHandling /LeaveUntagged
			/AddPageInfo false
			/AddBleedMarks false
			/IncludeLayers false
			/IncludeInteractive false
			/AddColorBars false
			/UseDocumentBleed false
			/AddCropMarks false
			/DestinationProfileName (U.S. Web Coated \050SWOP\051 v2)
			/Namespace [
				(Adobe)
				(CreativeSuite)
				(2.0)
]
			/Downsample16BitImages true
		>>
]
	/CompressPages true
	/GrayImageMinResolution 200
	/CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
	/PDFXBleedBoxToTrimBoxOffset [
		0.0
		0.0
		0.0
		0.0
]
	/AutoFilterGrayImages false
	/EncodeColorImages true
	/AlwaysEmbed [
]
	/EndPage -1
	/DownsampleColorImages true
	/ASCII85EncodePages false
	/PreserveEPSInfo false
	/PDFXTrimBoxToMediaBoxOffset [
		0.0
		0.0
		0.0
		0.0
]
	/CompatibilityLevel 1.7
	/MonoImageResolution 600
	/NeverEmbed [
]
	/CannotEmbedFontPolicy /Error
	/PreserveOPIComments false
	/AutoPositionEPSFiles false
	/JPEG2000GrayACSImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
	/EmbedJobOptions true
	/JPEG2000ColorACSImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/MonoImageDownsampleType /Bicubic
	/DetectBlends true
	/EmitDSCWarnings false
	/ColorImageDownsampleType /Bicubic
	/EncodeGrayImages true
	/Namespace [
		(Adobe)
		(Common)
		(1.0)
]
	/AutoFilterColorImages false
	/DownsampleGrayImages true
	/GrayImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/AntiAliasMonoImages false
	/GrayImageAutoFilterStrategy /JPEG
	/GrayACSImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/ColorImageAutoFilterStrategy /JPEG
	/ColorImageMinResolutionPolicy /OK
	/ColorImageResolution 300
	/PDFXRegistryName (http://www.color.org)
	/MonoImageFilter /CCITTFaxEncode
	/CalGrayProfile (Dot Gain 15%)
	/ColorImageMinDownsampleDepth 1
	/PDFXTrapped /False
	/DetectCurves 0.0
	/ColorImageDepth -1
	/JPEG2000GrayImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/TransferFunctionInfo /Remove
	/ColorImageFilter /DCTEncode
	/PDFX3Check false
	/ParseICCProfilesInComments true
	/DSCReportingLevel 0
	/ColorACSImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/PDFXOutputConditionIdentifier (CGATS TR 001)
	/PDFXCompliantPDFOnly false
	/AllowTransparency false
	/UsePrologue false
	/PreserveCopyPage true
	/StartPage 1
	/MonoImageDownsampleThreshold 1.5
	/GrayImageDownsampleThreshold 1.5
	/CheckCompliance [
		/None
]
	/CreateJDFFile false
	/PDFXSetBleedBoxToMediaBox true
	/EmbedOpenType false
	/OPM 1
	/PreserveOverprintSettings true
	/UCRandBGInfo /Preserve
	/ColorImageDownsampleThreshold 1.5
	/MonoImageDict <<
		/K -1
	>>
	/GrayImageDownsampleType /Bicubic
	/Description <<
		/ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
		/GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
		/FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
		/KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
		/HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
		/NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
		/DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
		/CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
		/ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
		/DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
		/JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
		/SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
		/SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
		/CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
		/CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
		/ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
		/RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
		/HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
		/PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
		/NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
		/TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
		/POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
		/HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
		/SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
		/RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
		/ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
	>>
	/CropMonoImages false
	/DefaultRenderingIntent /Default
	/PreserveHalftoneInfo true
	/ColorImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/CropGrayImages false
	/PDFXOutputCondition ()
	/SubsetFonts false
	/EncodeMonoImages true
	/CropColorImages false
	/PDFXNoTrimBoxError true
>>
setdistillerparams
<<
	/PageSize [
		612.0
		792.0
]
	/HWResolution [
		600
		600
]
>>
setpagedevice

